![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpan9 | GIF version |
Description: Modus ponens conjoining dissimilar antecedents. (Contributed by NM, 1-Feb-2008.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
mpan9.1 | ⊢ (𝜑 → 𝜓) |
mpan9.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
Ref | Expression |
---|---|
mpan9 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpan9.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | mpan9.2 | . . 3 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
3 | 1, 2 | syl5 32 | . 2 ⊢ (𝜒 → (𝜑 → 𝜃)) |
4 | 3 | impcom 124 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 |
This theorem is referenced by: sylan 279 vtocl2gf 2703 vtocl3gf 2704 vtoclegft 2713 sbcthdv 2876 disji2 3868 swopolem 4165 funssres 5101 fvmptssdm 5437 fmptcof 5519 fliftfuns 5631 isorel 5641 caovclg 5855 caovcomg 5858 caovassg 5861 caovcang 5864 caovordig 5868 caovordg 5870 caovdig 5877 caovdirg 5880 qliftfuns 6443 nneneq 6680 supmoti 6795 recexprlemopl 7334 recexprlemopu 7336 cauappcvgprlemladdrl 7366 caucvgsrlemcl 7484 caucvgsrlemfv 7486 caucvgsr 7497 ltordlem 8111 lble 8563 uz11 9198 seq3caopr3 10095 climcaucn 10959 sumdc 10966 fsum3 10995 fsumf1o 10998 fsum3cvg2 11002 isummulc2 11034 fsum2dlemstep 11042 fisumcom2 11046 fsumshftm 11053 fisum0diag2 11055 fsum00 11070 isumshft 11098 dvdsprm 11610 ssnei2 12108 psmet0 12255 psmettri2 12256 cncfi 12478 nninfsellemdc 12790 |
Copyright terms: Public domain | W3C validator |