ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  finomni GIF version

Theorem finomni 7138
Description: A finite set is omniscient. Remark right after Definition 3.1 of [Pierik], p. 14. (Contributed by Jim Kingdon, 28-Jun-2022.)
Assertion
Ref Expression
finomni (𝐴 ∈ Fin → 𝐴 ∈ Omni)

Proof of Theorem finomni
Dummy variables 𝑤 𝑦 𝑧 𝑓 𝑔 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2240 . 2 (𝑤 = ∅ → (𝑤 ∈ Omni ↔ ∅ ∈ Omni))
2 eleq1 2240 . 2 (𝑤 = 𝑦 → (𝑤 ∈ Omni ↔ 𝑦 ∈ Omni))
3 eleq1 2240 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤 ∈ Omni ↔ (𝑦 ∪ {𝑧}) ∈ Omni))
4 eleq1 2240 . 2 (𝑤 = 𝐴 → (𝑤 ∈ Omni ↔ 𝐴 ∈ Omni))
5 0ex 4131 . . . 4 ∅ ∈ V
6 isomni 7134 . . . 4 (∅ ∈ V → (∅ ∈ Omni ↔ ∀𝑓(𝑓:∅⟶2o → (∃𝑥 ∈ ∅ (𝑓𝑥) = ∅ ∨ ∀𝑥 ∈ ∅ (𝑓𝑥) = 1o))))
75, 6ax-mp 5 . . 3 (∅ ∈ Omni ↔ ∀𝑓(𝑓:∅⟶2o → (∃𝑥 ∈ ∅ (𝑓𝑥) = ∅ ∨ ∀𝑥 ∈ ∅ (𝑓𝑥) = 1o)))
8 ral0 3525 . . . . 5 𝑥 ∈ ∅ (𝑓𝑥) = 1o
98olci 732 . . . 4 (∃𝑥 ∈ ∅ (𝑓𝑥) = ∅ ∨ ∀𝑥 ∈ ∅ (𝑓𝑥) = 1o)
109a1i 9 . . 3 (𝑓:∅⟶2o → (∃𝑥 ∈ ∅ (𝑓𝑥) = ∅ ∨ ∀𝑥 ∈ ∅ (𝑓𝑥) = 1o))
117, 10mpgbir 1453 . 2 ∅ ∈ Omni
12 elun1 3303 . . . . . . . . . . . 12 (𝑥𝑦𝑥 ∈ (𝑦 ∪ {𝑧}))
1312ad2antlr 489 . . . . . . . . . . 11 (((((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) ∧ 𝑥𝑦) ∧ ((𝑔𝑦)‘𝑥) = ∅) → 𝑥 ∈ (𝑦 ∪ {𝑧}))
14 fvres 5540 . . . . . . . . . . . . 13 (𝑥𝑦 → ((𝑔𝑦)‘𝑥) = (𝑔𝑥))
1514ad2antlr 489 . . . . . . . . . . . 12 (((((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) ∧ 𝑥𝑦) ∧ ((𝑔𝑦)‘𝑥) = ∅) → ((𝑔𝑦)‘𝑥) = (𝑔𝑥))
16 simpr 110 . . . . . . . . . . . 12 (((((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) ∧ 𝑥𝑦) ∧ ((𝑔𝑦)‘𝑥) = ∅) → ((𝑔𝑦)‘𝑥) = ∅)
1715, 16eqtr3d 2212 . . . . . . . . . . 11 (((((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) ∧ 𝑥𝑦) ∧ ((𝑔𝑦)‘𝑥) = ∅) → (𝑔𝑥) = ∅)
18 fveq2 5516 . . . . . . . . . . . . 13 (𝑢 = 𝑥 → (𝑔𝑢) = (𝑔𝑥))
1918eqeq1d 2186 . . . . . . . . . . . 12 (𝑢 = 𝑥 → ((𝑔𝑢) = ∅ ↔ (𝑔𝑥) = ∅))
2019rspcev 2842 . . . . . . . . . . 11 ((𝑥 ∈ (𝑦 ∪ {𝑧}) ∧ (𝑔𝑥) = ∅) → ∃𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔𝑢) = ∅)
2113, 17, 20syl2anc 411 . . . . . . . . . 10 (((((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) ∧ 𝑥𝑦) ∧ ((𝑔𝑦)‘𝑥) = ∅) → ∃𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔𝑢) = ∅)
2221orcd 733 . . . . . . . . 9 (((((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) ∧ 𝑥𝑦) ∧ ((𝑔𝑦)‘𝑥) = ∅) → (∃𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔𝑢) = ∅ ∨ ∀𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔𝑢) = 1o))
2322ex 115 . . . . . . . 8 ((((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) ∧ 𝑥𝑦) → (((𝑔𝑦)‘𝑥) = ∅ → (∃𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔𝑢) = ∅ ∨ ∀𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔𝑢) = 1o)))
2423rexlimdva 2594 . . . . . . 7 (((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) → (∃𝑥𝑦 ((𝑔𝑦)‘𝑥) = ∅ → (∃𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔𝑢) = ∅ ∨ ∀𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔𝑢) = 1o)))
25 vsnid 3625 . . . . . . . . . . . . 13 𝑧 ∈ {𝑧}
26 elun2 3304 . . . . . . . . . . . . 13 (𝑧 ∈ {𝑧} → 𝑧 ∈ (𝑦 ∪ {𝑧}))
2725, 26ax-mp 5 . . . . . . . . . . . 12 𝑧 ∈ (𝑦 ∪ {𝑧})
2827a1i 9 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) → 𝑧 ∈ (𝑦 ∪ {𝑧}))
29 fveq2 5516 . . . . . . . . . . . . 13 (𝑢 = 𝑧 → (𝑔𝑢) = (𝑔𝑧))
3029eqeq1d 2186 . . . . . . . . . . . 12 (𝑢 = 𝑧 → ((𝑔𝑢) = ∅ ↔ (𝑔𝑧) = ∅))
3130rspcev 2842 . . . . . . . . . . 11 ((𝑧 ∈ (𝑦 ∪ {𝑧}) ∧ (𝑔𝑧) = ∅) → ∃𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔𝑢) = ∅)
3228, 31sylan 283 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) ∧ (𝑔𝑧) = ∅) → ∃𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔𝑢) = ∅)
3332orcd 733 . . . . . . . . 9 ((((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) ∧ (𝑔𝑧) = ∅) → (∃𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔𝑢) = ∅ ∨ ∀𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔𝑢) = 1o))
3433a1d 22 . . . . . . . 8 ((((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) ∧ (𝑔𝑧) = ∅) → (∀𝑥𝑦 ((𝑔𝑦)‘𝑥) = 1o → (∃𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔𝑢) = ∅ ∨ ∀𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔𝑢) = 1o)))
35 simpr 110 . . . . . . . . . . . 12 (((((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) ∧ (𝑔𝑧) = 1o) ∧ ∀𝑥𝑦 ((𝑔𝑦)‘𝑥) = 1o) → ∀𝑥𝑦 ((𝑔𝑦)‘𝑥) = 1o)
36 fveq2 5516 . . . . . . . . . . . . . . 15 (𝑥 = 𝑢 → ((𝑔𝑦)‘𝑥) = ((𝑔𝑦)‘𝑢))
3736eqeq1d 2186 . . . . . . . . . . . . . 14 (𝑥 = 𝑢 → (((𝑔𝑦)‘𝑥) = 1o ↔ ((𝑔𝑦)‘𝑢) = 1o))
3837cbvralv 2704 . . . . . . . . . . . . 13 (∀𝑥𝑦 ((𝑔𝑦)‘𝑥) = 1o ↔ ∀𝑢𝑦 ((𝑔𝑦)‘𝑢) = 1o)
39 fvres 5540 . . . . . . . . . . . . . . 15 (𝑢𝑦 → ((𝑔𝑦)‘𝑢) = (𝑔𝑢))
4039eqeq1d 2186 . . . . . . . . . . . . . 14 (𝑢𝑦 → (((𝑔𝑦)‘𝑢) = 1o ↔ (𝑔𝑢) = 1o))
4140ralbiia 2491 . . . . . . . . . . . . 13 (∀𝑢𝑦 ((𝑔𝑦)‘𝑢) = 1o ↔ ∀𝑢𝑦 (𝑔𝑢) = 1o)
4238, 41bitri 184 . . . . . . . . . . . 12 (∀𝑥𝑦 ((𝑔𝑦)‘𝑥) = 1o ↔ ∀𝑢𝑦 (𝑔𝑢) = 1o)
4335, 42sylib 122 . . . . . . . . . . 11 (((((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) ∧ (𝑔𝑧) = 1o) ∧ ∀𝑥𝑦 ((𝑔𝑦)‘𝑥) = 1o) → ∀𝑢𝑦 (𝑔𝑢) = 1o)
44 simplr 528 . . . . . . . . . . . 12 (((((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) ∧ (𝑔𝑧) = 1o) ∧ ∀𝑥𝑦 ((𝑔𝑦)‘𝑥) = 1o) → (𝑔𝑧) = 1o)
45 vex 2741 . . . . . . . . . . . . 13 𝑧 ∈ V
4629eqeq1d 2186 . . . . . . . . . . . . 13 (𝑢 = 𝑧 → ((𝑔𝑢) = 1o ↔ (𝑔𝑧) = 1o))
4745, 46ralsn 3636 . . . . . . . . . . . 12 (∀𝑢 ∈ {𝑧} (𝑔𝑢) = 1o ↔ (𝑔𝑧) = 1o)
4844, 47sylibr 134 . . . . . . . . . . 11 (((((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) ∧ (𝑔𝑧) = 1o) ∧ ∀𝑥𝑦 ((𝑔𝑦)‘𝑥) = 1o) → ∀𝑢 ∈ {𝑧} (𝑔𝑢) = 1o)
49 ralun 3318 . . . . . . . . . . 11 ((∀𝑢𝑦 (𝑔𝑢) = 1o ∧ ∀𝑢 ∈ {𝑧} (𝑔𝑢) = 1o) → ∀𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔𝑢) = 1o)
5043, 48, 49syl2anc 411 . . . . . . . . . 10 (((((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) ∧ (𝑔𝑧) = 1o) ∧ ∀𝑥𝑦 ((𝑔𝑦)‘𝑥) = 1o) → ∀𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔𝑢) = 1o)
5150olcd 734 . . . . . . . . 9 (((((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) ∧ (𝑔𝑧) = 1o) ∧ ∀𝑥𝑦 ((𝑔𝑦)‘𝑥) = 1o) → (∃𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔𝑢) = ∅ ∨ ∀𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔𝑢) = 1o))
5251ex 115 . . . . . . . 8 ((((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) ∧ (𝑔𝑧) = 1o) → (∀𝑥𝑦 ((𝑔𝑦)‘𝑥) = 1o → (∃𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔𝑢) = ∅ ∨ ∀𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔𝑢) = 1o)))
53 simpr 110 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) → 𝑔:(𝑦 ∪ {𝑧})⟶2o)
5453, 28ffvelcdmd 5653 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) → (𝑔𝑧) ∈ 2o)
55 df2o3 6431 . . . . . . . . . 10 2o = {∅, 1o}
5654, 55eleqtrdi 2270 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) → (𝑔𝑧) ∈ {∅, 1o})
57 elpri 3616 . . . . . . . . 9 ((𝑔𝑧) ∈ {∅, 1o} → ((𝑔𝑧) = ∅ ∨ (𝑔𝑧) = 1o))
5856, 57syl 14 . . . . . . . 8 (((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) → ((𝑔𝑧) = ∅ ∨ (𝑔𝑧) = 1o))
5934, 52, 58mpjaodan 798 . . . . . . 7 (((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) → (∀𝑥𝑦 ((𝑔𝑦)‘𝑥) = 1o → (∃𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔𝑢) = ∅ ∨ ∀𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔𝑢) = 1o)))
60 vex 2741 . . . . . . . . . . . 12 𝑦 ∈ V
61 isomni 7134 . . . . . . . . . . . 12 (𝑦 ∈ V → (𝑦 ∈ Omni ↔ ∀𝑓(𝑓:𝑦⟶2o → (∃𝑥𝑦 (𝑓𝑥) = ∅ ∨ ∀𝑥𝑦 (𝑓𝑥) = 1o))))
6260, 61ax-mp 5 . . . . . . . . . . 11 (𝑦 ∈ Omni ↔ ∀𝑓(𝑓:𝑦⟶2o → (∃𝑥𝑦 (𝑓𝑥) = ∅ ∨ ∀𝑥𝑦 (𝑓𝑥) = 1o)))
6362biimpi 120 . . . . . . . . . 10 (𝑦 ∈ Omni → ∀𝑓(𝑓:𝑦⟶2o → (∃𝑥𝑦 (𝑓𝑥) = ∅ ∨ ∀𝑥𝑦 (𝑓𝑥) = 1o)))
6463adantl 277 . . . . . . . . 9 ((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) → ∀𝑓(𝑓:𝑦⟶2o → (∃𝑥𝑦 (𝑓𝑥) = ∅ ∨ ∀𝑥𝑦 (𝑓𝑥) = 1o)))
65 vex 2741 . . . . . . . . . . 11 𝑔 ∈ V
6665resex 4949 . . . . . . . . . 10 (𝑔𝑦) ∈ V
67 feq1 5349 . . . . . . . . . . 11 (𝑓 = (𝑔𝑦) → (𝑓:𝑦⟶2o ↔ (𝑔𝑦):𝑦⟶2o))
68 fveq1 5515 . . . . . . . . . . . . . 14 (𝑓 = (𝑔𝑦) → (𝑓𝑥) = ((𝑔𝑦)‘𝑥))
6968eqeq1d 2186 . . . . . . . . . . . . 13 (𝑓 = (𝑔𝑦) → ((𝑓𝑥) = ∅ ↔ ((𝑔𝑦)‘𝑥) = ∅))
7069rexbidv 2478 . . . . . . . . . . . 12 (𝑓 = (𝑔𝑦) → (∃𝑥𝑦 (𝑓𝑥) = ∅ ↔ ∃𝑥𝑦 ((𝑔𝑦)‘𝑥) = ∅))
7168eqeq1d 2186 . . . . . . . . . . . . 13 (𝑓 = (𝑔𝑦) → ((𝑓𝑥) = 1o ↔ ((𝑔𝑦)‘𝑥) = 1o))
7271ralbidv 2477 . . . . . . . . . . . 12 (𝑓 = (𝑔𝑦) → (∀𝑥𝑦 (𝑓𝑥) = 1o ↔ ∀𝑥𝑦 ((𝑔𝑦)‘𝑥) = 1o))
7370, 72orbi12d 793 . . . . . . . . . . 11 (𝑓 = (𝑔𝑦) → ((∃𝑥𝑦 (𝑓𝑥) = ∅ ∨ ∀𝑥𝑦 (𝑓𝑥) = 1o) ↔ (∃𝑥𝑦 ((𝑔𝑦)‘𝑥) = ∅ ∨ ∀𝑥𝑦 ((𝑔𝑦)‘𝑥) = 1o)))
7467, 73imbi12d 234 . . . . . . . . . 10 (𝑓 = (𝑔𝑦) → ((𝑓:𝑦⟶2o → (∃𝑥𝑦 (𝑓𝑥) = ∅ ∨ ∀𝑥𝑦 (𝑓𝑥) = 1o)) ↔ ((𝑔𝑦):𝑦⟶2o → (∃𝑥𝑦 ((𝑔𝑦)‘𝑥) = ∅ ∨ ∀𝑥𝑦 ((𝑔𝑦)‘𝑥) = 1o))))
7566, 74spcv 2832 . . . . . . . . 9 (∀𝑓(𝑓:𝑦⟶2o → (∃𝑥𝑦 (𝑓𝑥) = ∅ ∨ ∀𝑥𝑦 (𝑓𝑥) = 1o)) → ((𝑔𝑦):𝑦⟶2o → (∃𝑥𝑦 ((𝑔𝑦)‘𝑥) = ∅ ∨ ∀𝑥𝑦 ((𝑔𝑦)‘𝑥) = 1o)))
7664, 75syl 14 . . . . . . . 8 ((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) → ((𝑔𝑦):𝑦⟶2o → (∃𝑥𝑦 ((𝑔𝑦)‘𝑥) = ∅ ∨ ∀𝑥𝑦 ((𝑔𝑦)‘𝑥) = 1o)))
77 ssun1 3299 . . . . . . . . 9 𝑦 ⊆ (𝑦 ∪ {𝑧})
78 fssres 5392 . . . . . . . . 9 ((𝑔:(𝑦 ∪ {𝑧})⟶2o𝑦 ⊆ (𝑦 ∪ {𝑧})) → (𝑔𝑦):𝑦⟶2o)
7977, 78mpan2 425 . . . . . . . 8 (𝑔:(𝑦 ∪ {𝑧})⟶2o → (𝑔𝑦):𝑦⟶2o)
8076, 79impel 280 . . . . . . 7 (((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) → (∃𝑥𝑦 ((𝑔𝑦)‘𝑥) = ∅ ∨ ∀𝑥𝑦 ((𝑔𝑦)‘𝑥) = 1o))
8124, 59, 80mpjaod 718 . . . . . 6 (((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) → (∃𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔𝑢) = ∅ ∨ ∀𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔𝑢) = 1o))
8281ex 115 . . . . 5 ((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) → (𝑔:(𝑦 ∪ {𝑧})⟶2o → (∃𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔𝑢) = ∅ ∨ ∀𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔𝑢) = 1o)))
8382alrimiv 1874 . . . 4 ((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) → ∀𝑔(𝑔:(𝑦 ∪ {𝑧})⟶2o → (∃𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔𝑢) = ∅ ∨ ∀𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔𝑢) = 1o)))
8445snex 4186 . . . . . 6 {𝑧} ∈ V
8560, 84unex 4442 . . . . 5 (𝑦 ∪ {𝑧}) ∈ V
86 isomni 7134 . . . . 5 ((𝑦 ∪ {𝑧}) ∈ V → ((𝑦 ∪ {𝑧}) ∈ Omni ↔ ∀𝑔(𝑔:(𝑦 ∪ {𝑧})⟶2o → (∃𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔𝑢) = ∅ ∨ ∀𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔𝑢) = 1o))))
8785, 86ax-mp 5 . . . 4 ((𝑦 ∪ {𝑧}) ∈ Omni ↔ ∀𝑔(𝑔:(𝑦 ∪ {𝑧})⟶2o → (∃𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔𝑢) = ∅ ∨ ∀𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔𝑢) = 1o)))
8883, 87sylibr 134 . . 3 ((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) → (𝑦 ∪ {𝑧}) ∈ Omni)
8988ex 115 . 2 (𝑦 ∈ Fin → (𝑦 ∈ Omni → (𝑦 ∪ {𝑧}) ∈ Omni))
901, 2, 3, 4, 11, 89findcard2 6889 1 (𝐴 ∈ Fin → 𝐴 ∈ Omni)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708  wal 1351   = wceq 1353  wcel 2148  wral 2455  wrex 2456  Vcvv 2738  cun 3128  wss 3130  c0 3423  {csn 3593  {cpr 3594  cres 4629  wf 5213  cfv 5217  1oc1o 6410  2oc2o 6411  Fincfn 6740  Omnicomni 7132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-iord 4367  df-on 4369  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-1o 6417  df-2o 6418  df-er 6535  df-en 6741  df-fin 6743  df-omni 7133
This theorem is referenced by:  trilpolemlt1  14792
  Copyright terms: Public domain W3C validator