| Step | Hyp | Ref
 | Expression | 
| 1 |   | eleq1 2259 | 
. 2
⊢ (𝑤 = ∅ → (𝑤 ∈ Omni ↔ ∅
∈ Omni)) | 
| 2 |   | eleq1 2259 | 
. 2
⊢ (𝑤 = 𝑦 → (𝑤 ∈ Omni ↔ 𝑦 ∈ Omni)) | 
| 3 |   | eleq1 2259 | 
. 2
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤 ∈ Omni ↔ (𝑦 ∪ {𝑧}) ∈ Omni)) | 
| 4 |   | eleq1 2259 | 
. 2
⊢ (𝑤 = 𝐴 → (𝑤 ∈ Omni ↔ 𝐴 ∈ Omni)) | 
| 5 |   | 0ex 4160 | 
. . . 4
⊢ ∅
∈ V | 
| 6 |   | isomni 7202 | 
. . . 4
⊢ (∅
∈ V → (∅ ∈ Omni ↔ ∀𝑓(𝑓:∅⟶2o →
(∃𝑥 ∈ ∅
(𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ ∅ (𝑓‘𝑥) = 1o)))) | 
| 7 | 5, 6 | ax-mp 5 | 
. . 3
⊢ (∅
∈ Omni ↔ ∀𝑓(𝑓:∅⟶2o →
(∃𝑥 ∈ ∅
(𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ ∅ (𝑓‘𝑥) = 1o))) | 
| 8 |   | ral0 3552 | 
. . . . 5
⊢
∀𝑥 ∈
∅ (𝑓‘𝑥) =
1o | 
| 9 | 8 | olci 733 | 
. . . 4
⊢
(∃𝑥 ∈
∅ (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ ∅ (𝑓‘𝑥) = 1o) | 
| 10 | 9 | a1i 9 | 
. . 3
⊢ (𝑓:∅⟶2o
→ (∃𝑥 ∈
∅ (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ ∅ (𝑓‘𝑥) = 1o)) | 
| 11 | 7, 10 | mpgbir 1467 | 
. 2
⊢ ∅
∈ Omni | 
| 12 |   | elun1 3330 | 
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝑦 → 𝑥 ∈ (𝑦 ∪ {𝑧})) | 
| 13 | 12 | ad2antlr 489 | 
. . . . . . . . . . 11
⊢
(((((𝑦 ∈ Fin
∧ 𝑦 ∈ Omni) ∧
𝑔:(𝑦 ∪ {𝑧})⟶2o) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑔 ↾ 𝑦)‘𝑥) = ∅) → 𝑥 ∈ (𝑦 ∪ {𝑧})) | 
| 14 |   | fvres 5582 | 
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝑦 → ((𝑔 ↾ 𝑦)‘𝑥) = (𝑔‘𝑥)) | 
| 15 | 14 | ad2antlr 489 | 
. . . . . . . . . . . 12
⊢
(((((𝑦 ∈ Fin
∧ 𝑦 ∈ Omni) ∧
𝑔:(𝑦 ∪ {𝑧})⟶2o) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑔 ↾ 𝑦)‘𝑥) = ∅) → ((𝑔 ↾ 𝑦)‘𝑥) = (𝑔‘𝑥)) | 
| 16 |   | simpr 110 | 
. . . . . . . . . . . 12
⊢
(((((𝑦 ∈ Fin
∧ 𝑦 ∈ Omni) ∧
𝑔:(𝑦 ∪ {𝑧})⟶2o) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑔 ↾ 𝑦)‘𝑥) = ∅) → ((𝑔 ↾ 𝑦)‘𝑥) = ∅) | 
| 17 | 15, 16 | eqtr3d 2231 | 
. . . . . . . . . . 11
⊢
(((((𝑦 ∈ Fin
∧ 𝑦 ∈ Omni) ∧
𝑔:(𝑦 ∪ {𝑧})⟶2o) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑔 ↾ 𝑦)‘𝑥) = ∅) → (𝑔‘𝑥) = ∅) | 
| 18 |   | fveq2 5558 | 
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑥 → (𝑔‘𝑢) = (𝑔‘𝑥)) | 
| 19 | 18 | eqeq1d 2205 | 
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑥 → ((𝑔‘𝑢) = ∅ ↔ (𝑔‘𝑥) = ∅)) | 
| 20 | 19 | rspcev 2868 | 
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (𝑦 ∪ {𝑧}) ∧ (𝑔‘𝑥) = ∅) → ∃𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔‘𝑢) = ∅) | 
| 21 | 13, 17, 20 | syl2anc 411 | 
. . . . . . . . . 10
⊢
(((((𝑦 ∈ Fin
∧ 𝑦 ∈ Omni) ∧
𝑔:(𝑦 ∪ {𝑧})⟶2o) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑔 ↾ 𝑦)‘𝑥) = ∅) → ∃𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔‘𝑢) = ∅) | 
| 22 | 21 | orcd 734 | 
. . . . . . . . 9
⊢
(((((𝑦 ∈ Fin
∧ 𝑦 ∈ Omni) ∧
𝑔:(𝑦 ∪ {𝑧})⟶2o) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑔 ↾ 𝑦)‘𝑥) = ∅) → (∃𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔‘𝑢) = ∅ ∨ ∀𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔‘𝑢) = 1o)) | 
| 23 | 22 | ex 115 | 
. . . . . . . 8
⊢ ((((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) ∧ 𝑥 ∈ 𝑦) → (((𝑔 ↾ 𝑦)‘𝑥) = ∅ → (∃𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔‘𝑢) = ∅ ∨ ∀𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔‘𝑢) = 1o))) | 
| 24 | 23 | rexlimdva 2614 | 
. . . . . . 7
⊢ (((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) → (∃𝑥 ∈ 𝑦 ((𝑔 ↾ 𝑦)‘𝑥) = ∅ → (∃𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔‘𝑢) = ∅ ∨ ∀𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔‘𝑢) = 1o))) | 
| 25 |   | vsnid 3654 | 
. . . . . . . . . . . . 13
⊢ 𝑧 ∈ {𝑧} | 
| 26 |   | elun2 3331 | 
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ {𝑧} → 𝑧 ∈ (𝑦 ∪ {𝑧})) | 
| 27 | 25, 26 | ax-mp 5 | 
. . . . . . . . . . . 12
⊢ 𝑧 ∈ (𝑦 ∪ {𝑧}) | 
| 28 | 27 | a1i 9 | 
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) → 𝑧 ∈ (𝑦 ∪ {𝑧})) | 
| 29 |   | fveq2 5558 | 
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑧 → (𝑔‘𝑢) = (𝑔‘𝑧)) | 
| 30 | 29 | eqeq1d 2205 | 
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑧 → ((𝑔‘𝑢) = ∅ ↔ (𝑔‘𝑧) = ∅)) | 
| 31 | 30 | rspcev 2868 | 
. . . . . . . . . . 11
⊢ ((𝑧 ∈ (𝑦 ∪ {𝑧}) ∧ (𝑔‘𝑧) = ∅) → ∃𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔‘𝑢) = ∅) | 
| 32 | 28, 31 | sylan 283 | 
. . . . . . . . . 10
⊢ ((((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) ∧ (𝑔‘𝑧) = ∅) → ∃𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔‘𝑢) = ∅) | 
| 33 | 32 | orcd 734 | 
. . . . . . . . 9
⊢ ((((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) ∧ (𝑔‘𝑧) = ∅) → (∃𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔‘𝑢) = ∅ ∨ ∀𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔‘𝑢) = 1o)) | 
| 34 | 33 | a1d 22 | 
. . . . . . . 8
⊢ ((((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) ∧ (𝑔‘𝑧) = ∅) → (∀𝑥 ∈ 𝑦 ((𝑔 ↾ 𝑦)‘𝑥) = 1o → (∃𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔‘𝑢) = ∅ ∨ ∀𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔‘𝑢) = 1o))) | 
| 35 |   | simpr 110 | 
. . . . . . . . . . . 12
⊢
(((((𝑦 ∈ Fin
∧ 𝑦 ∈ Omni) ∧
𝑔:(𝑦 ∪ {𝑧})⟶2o) ∧ (𝑔‘𝑧) = 1o) ∧ ∀𝑥 ∈ 𝑦 ((𝑔 ↾ 𝑦)‘𝑥) = 1o) → ∀𝑥 ∈ 𝑦 ((𝑔 ↾ 𝑦)‘𝑥) = 1o) | 
| 36 |   | fveq2 5558 | 
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑢 → ((𝑔 ↾ 𝑦)‘𝑥) = ((𝑔 ↾ 𝑦)‘𝑢)) | 
| 37 | 36 | eqeq1d 2205 | 
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑢 → (((𝑔 ↾ 𝑦)‘𝑥) = 1o ↔ ((𝑔 ↾ 𝑦)‘𝑢) = 1o)) | 
| 38 | 37 | cbvralv 2729 | 
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
𝑦 ((𝑔 ↾ 𝑦)‘𝑥) = 1o ↔ ∀𝑢 ∈ 𝑦 ((𝑔 ↾ 𝑦)‘𝑢) = 1o) | 
| 39 |   | fvres 5582 | 
. . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ 𝑦 → ((𝑔 ↾ 𝑦)‘𝑢) = (𝑔‘𝑢)) | 
| 40 | 39 | eqeq1d 2205 | 
. . . . . . . . . . . . . 14
⊢ (𝑢 ∈ 𝑦 → (((𝑔 ↾ 𝑦)‘𝑢) = 1o ↔ (𝑔‘𝑢) = 1o)) | 
| 41 | 40 | ralbiia 2511 | 
. . . . . . . . . . . . 13
⊢
(∀𝑢 ∈
𝑦 ((𝑔 ↾ 𝑦)‘𝑢) = 1o ↔ ∀𝑢 ∈ 𝑦 (𝑔‘𝑢) = 1o) | 
| 42 | 38, 41 | bitri 184 | 
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
𝑦 ((𝑔 ↾ 𝑦)‘𝑥) = 1o ↔ ∀𝑢 ∈ 𝑦 (𝑔‘𝑢) = 1o) | 
| 43 | 35, 42 | sylib 122 | 
. . . . . . . . . . 11
⊢
(((((𝑦 ∈ Fin
∧ 𝑦 ∈ Omni) ∧
𝑔:(𝑦 ∪ {𝑧})⟶2o) ∧ (𝑔‘𝑧) = 1o) ∧ ∀𝑥 ∈ 𝑦 ((𝑔 ↾ 𝑦)‘𝑥) = 1o) → ∀𝑢 ∈ 𝑦 (𝑔‘𝑢) = 1o) | 
| 44 |   | simplr 528 | 
. . . . . . . . . . . 12
⊢
(((((𝑦 ∈ Fin
∧ 𝑦 ∈ Omni) ∧
𝑔:(𝑦 ∪ {𝑧})⟶2o) ∧ (𝑔‘𝑧) = 1o) ∧ ∀𝑥 ∈ 𝑦 ((𝑔 ↾ 𝑦)‘𝑥) = 1o) → (𝑔‘𝑧) = 1o) | 
| 45 |   | vex 2766 | 
. . . . . . . . . . . . 13
⊢ 𝑧 ∈ V | 
| 46 | 29 | eqeq1d 2205 | 
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑧 → ((𝑔‘𝑢) = 1o ↔ (𝑔‘𝑧) = 1o)) | 
| 47 | 45, 46 | ralsn 3665 | 
. . . . . . . . . . . 12
⊢
(∀𝑢 ∈
{𝑧} (𝑔‘𝑢) = 1o ↔ (𝑔‘𝑧) = 1o) | 
| 48 | 44, 47 | sylibr 134 | 
. . . . . . . . . . 11
⊢
(((((𝑦 ∈ Fin
∧ 𝑦 ∈ Omni) ∧
𝑔:(𝑦 ∪ {𝑧})⟶2o) ∧ (𝑔‘𝑧) = 1o) ∧ ∀𝑥 ∈ 𝑦 ((𝑔 ↾ 𝑦)‘𝑥) = 1o) → ∀𝑢 ∈ {𝑧} (𝑔‘𝑢) = 1o) | 
| 49 |   | ralun 3345 | 
. . . . . . . . . . 11
⊢
((∀𝑢 ∈
𝑦 (𝑔‘𝑢) = 1o ∧ ∀𝑢 ∈ {𝑧} (𝑔‘𝑢) = 1o) → ∀𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔‘𝑢) = 1o) | 
| 50 | 43, 48, 49 | syl2anc 411 | 
. . . . . . . . . 10
⊢
(((((𝑦 ∈ Fin
∧ 𝑦 ∈ Omni) ∧
𝑔:(𝑦 ∪ {𝑧})⟶2o) ∧ (𝑔‘𝑧) = 1o) ∧ ∀𝑥 ∈ 𝑦 ((𝑔 ↾ 𝑦)‘𝑥) = 1o) → ∀𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔‘𝑢) = 1o) | 
| 51 | 50 | olcd 735 | 
. . . . . . . . 9
⊢
(((((𝑦 ∈ Fin
∧ 𝑦 ∈ Omni) ∧
𝑔:(𝑦 ∪ {𝑧})⟶2o) ∧ (𝑔‘𝑧) = 1o) ∧ ∀𝑥 ∈ 𝑦 ((𝑔 ↾ 𝑦)‘𝑥) = 1o) → (∃𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔‘𝑢) = ∅ ∨ ∀𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔‘𝑢) = 1o)) | 
| 52 | 51 | ex 115 | 
. . . . . . . 8
⊢ ((((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) ∧ (𝑔‘𝑧) = 1o) → (∀𝑥 ∈ 𝑦 ((𝑔 ↾ 𝑦)‘𝑥) = 1o → (∃𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔‘𝑢) = ∅ ∨ ∀𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔‘𝑢) = 1o))) | 
| 53 |   | simpr 110 | 
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) → 𝑔:(𝑦 ∪ {𝑧})⟶2o) | 
| 54 | 53, 28 | ffvelcdmd 5698 | 
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) → (𝑔‘𝑧) ∈ 2o) | 
| 55 |   | df2o3 6488 | 
. . . . . . . . . 10
⊢
2o = {∅, 1o} | 
| 56 | 54, 55 | eleqtrdi 2289 | 
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) → (𝑔‘𝑧) ∈ {∅,
1o}) | 
| 57 |   | elpri 3645 | 
. . . . . . . . 9
⊢ ((𝑔‘𝑧) ∈ {∅, 1o} →
((𝑔‘𝑧) = ∅ ∨ (𝑔‘𝑧) = 1o)) | 
| 58 | 56, 57 | syl 14 | 
. . . . . . . 8
⊢ (((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) → ((𝑔‘𝑧) = ∅ ∨ (𝑔‘𝑧) = 1o)) | 
| 59 | 34, 52, 58 | mpjaodan 799 | 
. . . . . . 7
⊢ (((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) →
(∀𝑥 ∈ 𝑦 ((𝑔 ↾ 𝑦)‘𝑥) = 1o → (∃𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔‘𝑢) = ∅ ∨ ∀𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔‘𝑢) = 1o))) | 
| 60 |   | vex 2766 | 
. . . . . . . . . . . 12
⊢ 𝑦 ∈ V | 
| 61 |   | isomni 7202 | 
. . . . . . . . . . . 12
⊢ (𝑦 ∈ V → (𝑦 ∈ Omni ↔
∀𝑓(𝑓:𝑦⟶2o → (∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o)))) | 
| 62 | 60, 61 | ax-mp 5 | 
. . . . . . . . . . 11
⊢ (𝑦 ∈ Omni ↔
∀𝑓(𝑓:𝑦⟶2o → (∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o))) | 
| 63 | 62 | biimpi 120 | 
. . . . . . . . . 10
⊢ (𝑦 ∈ Omni →
∀𝑓(𝑓:𝑦⟶2o → (∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o))) | 
| 64 | 63 | adantl 277 | 
. . . . . . . . 9
⊢ ((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) →
∀𝑓(𝑓:𝑦⟶2o → (∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o))) | 
| 65 |   | vex 2766 | 
. . . . . . . . . . 11
⊢ 𝑔 ∈ V | 
| 66 | 65 | resex 4987 | 
. . . . . . . . . 10
⊢ (𝑔 ↾ 𝑦) ∈ V | 
| 67 |   | feq1 5390 | 
. . . . . . . . . . 11
⊢ (𝑓 = (𝑔 ↾ 𝑦) → (𝑓:𝑦⟶2o ↔ (𝑔 ↾ 𝑦):𝑦⟶2o)) | 
| 68 |   | fveq1 5557 | 
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑔 ↾ 𝑦) → (𝑓‘𝑥) = ((𝑔 ↾ 𝑦)‘𝑥)) | 
| 69 | 68 | eqeq1d 2205 | 
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑔 ↾ 𝑦) → ((𝑓‘𝑥) = ∅ ↔ ((𝑔 ↾ 𝑦)‘𝑥) = ∅)) | 
| 70 | 69 | rexbidv 2498 | 
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑔 ↾ 𝑦) → (∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅ ↔ ∃𝑥 ∈ 𝑦 ((𝑔 ↾ 𝑦)‘𝑥) = ∅)) | 
| 71 | 68 | eqeq1d 2205 | 
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑔 ↾ 𝑦) → ((𝑓‘𝑥) = 1o ↔ ((𝑔 ↾ 𝑦)‘𝑥) = 1o)) | 
| 72 | 71 | ralbidv 2497 | 
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑔 ↾ 𝑦) → (∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o ↔ ∀𝑥 ∈ 𝑦 ((𝑔 ↾ 𝑦)‘𝑥) = 1o)) | 
| 73 | 70, 72 | orbi12d 794 | 
. . . . . . . . . . 11
⊢ (𝑓 = (𝑔 ↾ 𝑦) → ((∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o) ↔ (∃𝑥 ∈ 𝑦 ((𝑔 ↾ 𝑦)‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝑦 ((𝑔 ↾ 𝑦)‘𝑥) = 1o))) | 
| 74 | 67, 73 | imbi12d 234 | 
. . . . . . . . . 10
⊢ (𝑓 = (𝑔 ↾ 𝑦) → ((𝑓:𝑦⟶2o → (∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o)) ↔ ((𝑔 ↾ 𝑦):𝑦⟶2o → (∃𝑥 ∈ 𝑦 ((𝑔 ↾ 𝑦)‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝑦 ((𝑔 ↾ 𝑦)‘𝑥) = 1o)))) | 
| 75 | 66, 74 | spcv 2858 | 
. . . . . . . . 9
⊢
(∀𝑓(𝑓:𝑦⟶2o → (∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o)) → ((𝑔 ↾ 𝑦):𝑦⟶2o → (∃𝑥 ∈ 𝑦 ((𝑔 ↾ 𝑦)‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝑦 ((𝑔 ↾ 𝑦)‘𝑥) = 1o))) | 
| 76 | 64, 75 | syl 14 | 
. . . . . . . 8
⊢ ((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) → ((𝑔 ↾ 𝑦):𝑦⟶2o → (∃𝑥 ∈ 𝑦 ((𝑔 ↾ 𝑦)‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝑦 ((𝑔 ↾ 𝑦)‘𝑥) = 1o))) | 
| 77 |   | ssun1 3326 | 
. . . . . . . . 9
⊢ 𝑦 ⊆ (𝑦 ∪ {𝑧}) | 
| 78 |   | fssres 5433 | 
. . . . . . . . 9
⊢ ((𝑔:(𝑦 ∪ {𝑧})⟶2o ∧ 𝑦 ⊆ (𝑦 ∪ {𝑧})) → (𝑔 ↾ 𝑦):𝑦⟶2o) | 
| 79 | 77, 78 | mpan2 425 | 
. . . . . . . 8
⊢ (𝑔:(𝑦 ∪ {𝑧})⟶2o → (𝑔 ↾ 𝑦):𝑦⟶2o) | 
| 80 | 76, 79 | impel 280 | 
. . . . . . 7
⊢ (((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) → (∃𝑥 ∈ 𝑦 ((𝑔 ↾ 𝑦)‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝑦 ((𝑔 ↾ 𝑦)‘𝑥) = 1o)) | 
| 81 | 24, 59, 80 | mpjaod 719 | 
. . . . . 6
⊢ (((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) ∧ 𝑔:(𝑦 ∪ {𝑧})⟶2o) → (∃𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔‘𝑢) = ∅ ∨ ∀𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔‘𝑢) = 1o)) | 
| 82 | 81 | ex 115 | 
. . . . 5
⊢ ((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) → (𝑔:(𝑦 ∪ {𝑧})⟶2o → (∃𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔‘𝑢) = ∅ ∨ ∀𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔‘𝑢) = 1o))) | 
| 83 | 82 | alrimiv 1888 | 
. . . 4
⊢ ((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) →
∀𝑔(𝑔:(𝑦 ∪ {𝑧})⟶2o → (∃𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔‘𝑢) = ∅ ∨ ∀𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔‘𝑢) = 1o))) | 
| 84 | 45 | snex 4218 | 
. . . . . 6
⊢ {𝑧} ∈ V | 
| 85 | 60, 84 | unex 4476 | 
. . . . 5
⊢ (𝑦 ∪ {𝑧}) ∈ V | 
| 86 |   | isomni 7202 | 
. . . . 5
⊢ ((𝑦 ∪ {𝑧}) ∈ V → ((𝑦 ∪ {𝑧}) ∈ Omni ↔ ∀𝑔(𝑔:(𝑦 ∪ {𝑧})⟶2o → (∃𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔‘𝑢) = ∅ ∨ ∀𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔‘𝑢) = 1o)))) | 
| 87 | 85, 86 | ax-mp 5 | 
. . . 4
⊢ ((𝑦 ∪ {𝑧}) ∈ Omni ↔ ∀𝑔(𝑔:(𝑦 ∪ {𝑧})⟶2o → (∃𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔‘𝑢) = ∅ ∨ ∀𝑢 ∈ (𝑦 ∪ {𝑧})(𝑔‘𝑢) = 1o))) | 
| 88 | 83, 87 | sylibr 134 | 
. . 3
⊢ ((𝑦 ∈ Fin ∧ 𝑦 ∈ Omni) → (𝑦 ∪ {𝑧}) ∈ Omni) | 
| 89 | 88 | ex 115 | 
. 2
⊢ (𝑦 ∈ Fin → (𝑦 ∈ Omni → (𝑦 ∪ {𝑧}) ∈ Omni)) | 
| 90 | 1, 2, 3, 4, 11, 89 | findcard2 6950 | 
1
⊢ (𝐴 ∈ Fin → 𝐴 ∈ Omni) |