| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fprodsplitsn | GIF version | ||
| Description: Separate out a term in a finite product. See also fprodunsn 11965 which is the same but with a distinct variable condition in place of Ⅎ𝑘𝜑. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| fprodsplitsn.ph | ⊢ Ⅎ𝑘𝜑 |
| fprodsplitsn.kd | ⊢ Ⅎ𝑘𝐷 |
| fprodsplitsn.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fprodsplitsn.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| fprodsplitsn.ba | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) |
| fprodsplitsn.c | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| fprodsplitsn.d | ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷) |
| fprodsplitsn.dcn | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| Ref | Expression |
|---|---|
| fprodsplitsn | ⊢ (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodsplitsn.ph | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 2 | fprodsplitsn.ba | . . . 4 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) | |
| 3 | disjsn 3697 | . . . 4 ⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ 𝐴) | |
| 4 | 2, 3 | sylibr 134 | . . 3 ⊢ (𝜑 → (𝐴 ∩ {𝐵}) = ∅) |
| 5 | eqidd 2207 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝐵}) = (𝐴 ∪ {𝐵})) | |
| 6 | fprodsplitsn.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 7 | fprodsplitsn.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 8 | snfig 6917 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → {𝐵} ∈ Fin) | |
| 9 | 7, 8 | syl 14 | . . . 4 ⊢ (𝜑 → {𝐵} ∈ Fin) |
| 10 | unfidisj 7031 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ {𝐵} ∈ Fin ∧ (𝐴 ∩ {𝐵}) = ∅) → (𝐴 ∪ {𝐵}) ∈ Fin) | |
| 11 | 6, 9, 4, 10 | syl3anc 1250 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝐵}) ∈ Fin) |
| 12 | fprodsplitsn.c | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) | |
| 13 | 12 | ex 115 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ)) |
| 14 | fprodsplitsn.d | . . . . . . . 8 ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷) | |
| 15 | 14 | adantl 277 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐶 = 𝐷) |
| 16 | fprodsplitsn.dcn | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
| 17 | 16 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐷 ∈ ℂ) |
| 18 | 15, 17 | eqeltrd 2283 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐶 ∈ ℂ) |
| 19 | 18 | ex 115 | . . . . 5 ⊢ (𝜑 → (𝑘 = 𝐵 → 𝐶 ∈ ℂ)) |
| 20 | 13, 19 | jaod 719 | . . . 4 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ∨ 𝑘 = 𝐵) → 𝐶 ∈ ℂ)) |
| 21 | elun 3316 | . . . . 5 ⊢ (𝑘 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝐵})) | |
| 22 | elsni 3653 | . . . . . 6 ⊢ (𝑘 ∈ {𝐵} → 𝑘 = 𝐵) | |
| 23 | 22 | orim2i 763 | . . . . 5 ⊢ ((𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝐵}) → (𝑘 ∈ 𝐴 ∨ 𝑘 = 𝐵)) |
| 24 | 21, 23 | sylbi 121 | . . . 4 ⊢ (𝑘 ∈ (𝐴 ∪ {𝐵}) → (𝑘 ∈ 𝐴 ∨ 𝑘 = 𝐵)) |
| 25 | 20, 24 | impel 280 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) → 𝐶 ∈ ℂ) |
| 26 | 1, 4, 5, 11, 25 | fprodsplitf 11993 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ {𝐵}𝐶)) |
| 27 | fprodsplitsn.kd | . . . . 5 ⊢ Ⅎ𝑘𝐷 | |
| 28 | 27, 14 | prodsnf 11953 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ ℂ) → ∏𝑘 ∈ {𝐵}𝐶 = 𝐷) |
| 29 | 7, 16, 28 | syl2anc 411 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ {𝐵}𝐶 = 𝐷) |
| 30 | 29 | oveq2d 5970 | . 2 ⊢ (𝜑 → (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ {𝐵}𝐶) = (∏𝑘 ∈ 𝐴 𝐶 · 𝐷)) |
| 31 | 26, 30 | eqtrd 2239 | 1 ⊢ (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 710 = wceq 1373 Ⅎwnf 1484 ∈ wcel 2177 Ⅎwnfc 2336 ∪ cun 3166 ∩ cin 3167 ∅c0 3462 {csn 3635 (class class class)co 5954 Fincfn 6837 ℂcc 7936 · cmul 7943 ∏cprod 11911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-precex 8048 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-apti 8053 ax-pre-ltadd 8054 ax-pre-mulgt0 8055 ax-pre-mulext 8056 ax-arch 8057 ax-caucvg 8058 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-if 3574 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-po 4348 df-iso 4349 df-iord 4418 df-on 4420 df-ilim 4421 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-isom 5286 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-recs 6401 df-irdg 6466 df-frec 6487 df-1o 6512 df-oadd 6516 df-er 6630 df-en 6838 df-dom 6839 df-fin 6840 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-reap 8661 df-ap 8668 df-div 8759 df-inn 9050 df-2 9108 df-3 9109 df-4 9110 df-n0 9309 df-z 9386 df-uz 9662 df-q 9754 df-rp 9789 df-fz 10144 df-fzo 10278 df-seqfrec 10606 df-exp 10697 df-ihash 10934 df-cj 11203 df-re 11204 df-im 11205 df-rsqrt 11359 df-abs 11360 df-clim 11640 df-proddc 11912 |
| This theorem is referenced by: fprodap0f 11997 fprodle 12001 |
| Copyright terms: Public domain | W3C validator |