ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodsplitsn GIF version

Theorem fprodsplitsn 11994
Description: Separate out a term in a finite product. See also fprodunsn 11965 which is the same but with a distinct variable condition in place of 𝑘𝜑. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodsplitsn.ph 𝑘𝜑
fprodsplitsn.kd 𝑘𝐷
fprodsplitsn.a (𝜑𝐴 ∈ Fin)
fprodsplitsn.b (𝜑𝐵𝑉)
fprodsplitsn.ba (𝜑 → ¬ 𝐵𝐴)
fprodsplitsn.c ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
fprodsplitsn.d (𝑘 = 𝐵𝐶 = 𝐷)
fprodsplitsn.dcn (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
fprodsplitsn (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘𝐴 𝐶 · 𝐷))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑉
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑘)   𝐷(𝑘)

Proof of Theorem fprodsplitsn
StepHypRef Expression
1 fprodsplitsn.ph . . 3 𝑘𝜑
2 fprodsplitsn.ba . . . 4 (𝜑 → ¬ 𝐵𝐴)
3 disjsn 3697 . . . 4 ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵𝐴)
42, 3sylibr 134 . . 3 (𝜑 → (𝐴 ∩ {𝐵}) = ∅)
5 eqidd 2207 . . 3 (𝜑 → (𝐴 ∪ {𝐵}) = (𝐴 ∪ {𝐵}))
6 fprodsplitsn.a . . . 4 (𝜑𝐴 ∈ Fin)
7 fprodsplitsn.b . . . . 5 (𝜑𝐵𝑉)
8 snfig 6917 . . . . 5 (𝐵𝑉 → {𝐵} ∈ Fin)
97, 8syl 14 . . . 4 (𝜑 → {𝐵} ∈ Fin)
10 unfidisj 7031 . . . 4 ((𝐴 ∈ Fin ∧ {𝐵} ∈ Fin ∧ (𝐴 ∩ {𝐵}) = ∅) → (𝐴 ∪ {𝐵}) ∈ Fin)
116, 9, 4, 10syl3anc 1250 . . 3 (𝜑 → (𝐴 ∪ {𝐵}) ∈ Fin)
12 fprodsplitsn.c . . . . . 6 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
1312ex 115 . . . . 5 (𝜑 → (𝑘𝐴𝐶 ∈ ℂ))
14 fprodsplitsn.d . . . . . . . 8 (𝑘 = 𝐵𝐶 = 𝐷)
1514adantl 277 . . . . . . 7 ((𝜑𝑘 = 𝐵) → 𝐶 = 𝐷)
16 fprodsplitsn.dcn . . . . . . . 8 (𝜑𝐷 ∈ ℂ)
1716adantr 276 . . . . . . 7 ((𝜑𝑘 = 𝐵) → 𝐷 ∈ ℂ)
1815, 17eqeltrd 2283 . . . . . 6 ((𝜑𝑘 = 𝐵) → 𝐶 ∈ ℂ)
1918ex 115 . . . . 5 (𝜑 → (𝑘 = 𝐵𝐶 ∈ ℂ))
2013, 19jaod 719 . . . 4 (𝜑 → ((𝑘𝐴𝑘 = 𝐵) → 𝐶 ∈ ℂ))
21 elun 3316 . . . . 5 (𝑘 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑘𝐴𝑘 ∈ {𝐵}))
22 elsni 3653 . . . . . 6 (𝑘 ∈ {𝐵} → 𝑘 = 𝐵)
2322orim2i 763 . . . . 5 ((𝑘𝐴𝑘 ∈ {𝐵}) → (𝑘𝐴𝑘 = 𝐵))
2421, 23sylbi 121 . . . 4 (𝑘 ∈ (𝐴 ∪ {𝐵}) → (𝑘𝐴𝑘 = 𝐵))
2520, 24impel 280 . . 3 ((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) → 𝐶 ∈ ℂ)
261, 4, 5, 11, 25fprodsplitf 11993 . 2 (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘𝐴 𝐶 · ∏𝑘 ∈ {𝐵}𝐶))
27 fprodsplitsn.kd . . . . 5 𝑘𝐷
2827, 14prodsnf 11953 . . . 4 ((𝐵𝑉𝐷 ∈ ℂ) → ∏𝑘 ∈ {𝐵}𝐶 = 𝐷)
297, 16, 28syl2anc 411 . . 3 (𝜑 → ∏𝑘 ∈ {𝐵}𝐶 = 𝐷)
3029oveq2d 5970 . 2 (𝜑 → (∏𝑘𝐴 𝐶 · ∏𝑘 ∈ {𝐵}𝐶) = (∏𝑘𝐴 𝐶 · 𝐷))
3126, 30eqtrd 2239 1 (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘𝐴 𝐶 · 𝐷))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 710   = wceq 1373  wnf 1484  wcel 2177  wnfc 2336  cun 3166  cin 3167  c0 3462  {csn 3635  (class class class)co 5954  Fincfn 6837  cc 7936   · cmul 7943  cprod 11911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-mulrcl 8037  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-precex 8048  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054  ax-pre-mulgt0 8055  ax-pre-mulext 8056  ax-arch 8057  ax-caucvg 8058
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-po 4348  df-iso 4349  df-iord 4418  df-on 4420  df-ilim 4421  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-isom 5286  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-irdg 6466  df-frec 6487  df-1o 6512  df-oadd 6516  df-er 6630  df-en 6838  df-dom 6839  df-fin 6840  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-reap 8661  df-ap 8668  df-div 8759  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-n0 9309  df-z 9386  df-uz 9662  df-q 9754  df-rp 9789  df-fz 10144  df-fzo 10278  df-seqfrec 10606  df-exp 10697  df-ihash 10934  df-cj 11203  df-re 11204  df-im 11205  df-rsqrt 11359  df-abs 11360  df-clim 11640  df-proddc 11912
This theorem is referenced by:  fprodap0f  11997  fprodle  12001
  Copyright terms: Public domain W3C validator