| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fprodsplitsn | GIF version | ||
| Description: Separate out a term in a finite product. See also fprodunsn 12101 which is the same but with a distinct variable condition in place of Ⅎ𝑘𝜑. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| fprodsplitsn.ph | ⊢ Ⅎ𝑘𝜑 |
| fprodsplitsn.kd | ⊢ Ⅎ𝑘𝐷 |
| fprodsplitsn.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fprodsplitsn.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| fprodsplitsn.ba | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) |
| fprodsplitsn.c | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| fprodsplitsn.d | ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷) |
| fprodsplitsn.dcn | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| Ref | Expression |
|---|---|
| fprodsplitsn | ⊢ (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodsplitsn.ph | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 2 | fprodsplitsn.ba | . . . 4 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) | |
| 3 | disjsn 3728 | . . . 4 ⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ 𝐴) | |
| 4 | 2, 3 | sylibr 134 | . . 3 ⊢ (𝜑 → (𝐴 ∩ {𝐵}) = ∅) |
| 5 | eqidd 2230 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝐵}) = (𝐴 ∪ {𝐵})) | |
| 6 | fprodsplitsn.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 7 | fprodsplitsn.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 8 | snfig 6957 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → {𝐵} ∈ Fin) | |
| 9 | 7, 8 | syl 14 | . . . 4 ⊢ (𝜑 → {𝐵} ∈ Fin) |
| 10 | unfidisj 7072 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ {𝐵} ∈ Fin ∧ (𝐴 ∩ {𝐵}) = ∅) → (𝐴 ∪ {𝐵}) ∈ Fin) | |
| 11 | 6, 9, 4, 10 | syl3anc 1271 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝐵}) ∈ Fin) |
| 12 | fprodsplitsn.c | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) | |
| 13 | 12 | ex 115 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ)) |
| 14 | fprodsplitsn.d | . . . . . . . 8 ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷) | |
| 15 | 14 | adantl 277 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐶 = 𝐷) |
| 16 | fprodsplitsn.dcn | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
| 17 | 16 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐷 ∈ ℂ) |
| 18 | 15, 17 | eqeltrd 2306 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐶 ∈ ℂ) |
| 19 | 18 | ex 115 | . . . . 5 ⊢ (𝜑 → (𝑘 = 𝐵 → 𝐶 ∈ ℂ)) |
| 20 | 13, 19 | jaod 722 | . . . 4 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ∨ 𝑘 = 𝐵) → 𝐶 ∈ ℂ)) |
| 21 | elun 3345 | . . . . 5 ⊢ (𝑘 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝐵})) | |
| 22 | elsni 3684 | . . . . . 6 ⊢ (𝑘 ∈ {𝐵} → 𝑘 = 𝐵) | |
| 23 | 22 | orim2i 766 | . . . . 5 ⊢ ((𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝐵}) → (𝑘 ∈ 𝐴 ∨ 𝑘 = 𝐵)) |
| 24 | 21, 23 | sylbi 121 | . . . 4 ⊢ (𝑘 ∈ (𝐴 ∪ {𝐵}) → (𝑘 ∈ 𝐴 ∨ 𝑘 = 𝐵)) |
| 25 | 20, 24 | impel 280 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) → 𝐶 ∈ ℂ) |
| 26 | 1, 4, 5, 11, 25 | fprodsplitf 12129 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ {𝐵}𝐶)) |
| 27 | fprodsplitsn.kd | . . . . 5 ⊢ Ⅎ𝑘𝐷 | |
| 28 | 27, 14 | prodsnf 12089 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ ℂ) → ∏𝑘 ∈ {𝐵}𝐶 = 𝐷) |
| 29 | 7, 16, 28 | syl2anc 411 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ {𝐵}𝐶 = 𝐷) |
| 30 | 29 | oveq2d 6010 | . 2 ⊢ (𝜑 → (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ {𝐵}𝐶) = (∏𝑘 ∈ 𝐴 𝐶 · 𝐷)) |
| 31 | 26, 30 | eqtrd 2262 | 1 ⊢ (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 713 = wceq 1395 Ⅎwnf 1506 ∈ wcel 2200 Ⅎwnfc 2359 ∪ cun 3195 ∩ cin 3196 ∅c0 3491 {csn 3666 (class class class)co 5994 Fincfn 6877 ℂcc 7985 · cmul 7992 ∏cprod 12047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 ax-caucvg 8107 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-isom 5323 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-irdg 6506 df-frec 6527 df-1o 6552 df-oadd 6556 df-er 6670 df-en 6878 df-dom 6879 df-fin 6880 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-n0 9358 df-z 9435 df-uz 9711 df-q 9803 df-rp 9838 df-fz 10193 df-fzo 10327 df-seqfrec 10657 df-exp 10748 df-ihash 10985 df-cj 11339 df-re 11340 df-im 11341 df-rsqrt 11495 df-abs 11496 df-clim 11776 df-proddc 12048 |
| This theorem is referenced by: fprodap0f 12133 fprodle 12137 |
| Copyright terms: Public domain | W3C validator |