Proof of Theorem reg2exmidlema
| Step | Hyp | Ref
 | Expression | 
| 1 |   | simplr 528 | 
. . . . . . 7
⊢ (((𝑢 ∈ 𝐴 ∧ ∀𝑣 ∈ 𝐴 𝑢 ⊆ 𝑣) ∧ 𝑢 = {∅}) → ∀𝑣 ∈ 𝐴 𝑢 ⊆ 𝑣) | 
| 2 |   | sseq1 3206 | 
. . . . . . . . 9
⊢ (𝑢 = {∅} → (𝑢 ⊆ 𝑣 ↔ {∅} ⊆ 𝑣)) | 
| 3 | 2 | ralbidv 2497 | 
. . . . . . . 8
⊢ (𝑢 = {∅} →
(∀𝑣 ∈ 𝐴 𝑢 ⊆ 𝑣 ↔ ∀𝑣 ∈ 𝐴 {∅} ⊆ 𝑣)) | 
| 4 | 3 | adantl 277 | 
. . . . . . 7
⊢ (((𝑢 ∈ 𝐴 ∧ ∀𝑣 ∈ 𝐴 𝑢 ⊆ 𝑣) ∧ 𝑢 = {∅}) → (∀𝑣 ∈ 𝐴 𝑢 ⊆ 𝑣 ↔ ∀𝑣 ∈ 𝐴 {∅} ⊆ 𝑣)) | 
| 5 | 1, 4 | mpbid 147 | 
. . . . . 6
⊢ (((𝑢 ∈ 𝐴 ∧ ∀𝑣 ∈ 𝐴 𝑢 ⊆ 𝑣) ∧ 𝑢 = {∅}) → ∀𝑣 ∈ 𝐴 {∅} ⊆ 𝑣) | 
| 6 |   | 0ex 4160 | 
. . . . . . . 8
⊢ ∅
∈ V | 
| 7 | 6 | snss 3757 | 
. . . . . . 7
⊢ (∅
∈ 𝑣 ↔ {∅}
⊆ 𝑣) | 
| 8 | 7 | ralbii 2503 | 
. . . . . 6
⊢
(∀𝑣 ∈
𝐴 ∅ ∈ 𝑣 ↔ ∀𝑣 ∈ 𝐴 {∅} ⊆ 𝑣) | 
| 9 | 5, 8 | sylibr 134 | 
. . . . 5
⊢ (((𝑢 ∈ 𝐴 ∧ ∀𝑣 ∈ 𝐴 𝑢 ⊆ 𝑣) ∧ 𝑢 = {∅}) → ∀𝑣 ∈ 𝐴 ∅ ∈ 𝑣) | 
| 10 |   | noel 3454 | 
. . . . . 6
⊢  ¬
∅ ∈ ∅ | 
| 11 |   | eqid 2196 | 
. . . . . . . . . . . 12
⊢ ∅ =
∅ | 
| 12 | 11 | jctl 314 | 
. . . . . . . . . . 11
⊢ (𝜑 → (∅ = ∅ ∧
𝜑)) | 
| 13 | 12 | olcd 735 | 
. . . . . . . . . 10
⊢ (𝜑 → (∅ = {∅} ∨
(∅ = ∅ ∧ 𝜑))) | 
| 14 | 6 | prid1 3728 | 
. . . . . . . . . 10
⊢ ∅
∈ {∅, {∅}} | 
| 15 | 13, 14 | jctil 312 | 
. . . . . . . . 9
⊢ (𝜑 → (∅ ∈ {∅,
{∅}} ∧ (∅ = {∅} ∨ (∅ = ∅ ∧ 𝜑)))) | 
| 16 |   | eqeq1 2203 | 
. . . . . . . . . . 11
⊢ (𝑥 = ∅ → (𝑥 = {∅} ↔ ∅ =
{∅})) | 
| 17 |   | eqeq1 2203 | 
. . . . . . . . . . . 12
⊢ (𝑥 = ∅ → (𝑥 = ∅ ↔ ∅ =
∅)) | 
| 18 | 17 | anbi1d 465 | 
. . . . . . . . . . 11
⊢ (𝑥 = ∅ → ((𝑥 = ∅ ∧ 𝜑) ↔ (∅ = ∅ ∧ 𝜑))) | 
| 19 | 16, 18 | orbi12d 794 | 
. . . . . . . . . 10
⊢ (𝑥 = ∅ → ((𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑)) ↔ (∅ = {∅} ∨ (∅
= ∅ ∧ 𝜑)))) | 
| 20 |   | regexmidlemm.a | 
. . . . . . . . . 10
⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))} | 
| 21 | 19, 20 | elrab2 2923 | 
. . . . . . . . 9
⊢ (∅
∈ 𝐴 ↔ (∅
∈ {∅, {∅}} ∧ (∅ = {∅} ∨ (∅ = ∅
∧ 𝜑)))) | 
| 22 | 15, 21 | sylibr 134 | 
. . . . . . . 8
⊢ (𝜑 → ∅ ∈ 𝐴) | 
| 23 |   | eleq2 2260 | 
. . . . . . . . 9
⊢ (𝑣 = ∅ → (∅
∈ 𝑣 ↔ ∅
∈ ∅)) | 
| 24 | 23 | rspcv 2864 | 
. . . . . . . 8
⊢ (∅
∈ 𝐴 →
(∀𝑣 ∈ 𝐴 ∅ ∈ 𝑣 → ∅ ∈
∅)) | 
| 25 | 22, 24 | syl 14 | 
. . . . . . 7
⊢ (𝜑 → (∀𝑣 ∈ 𝐴 ∅ ∈ 𝑣 → ∅ ∈
∅)) | 
| 26 | 25 | com12 30 | 
. . . . . 6
⊢
(∀𝑣 ∈
𝐴 ∅ ∈ 𝑣 → (𝜑 → ∅ ∈
∅)) | 
| 27 | 10, 26 | mtoi 665 | 
. . . . 5
⊢
(∀𝑣 ∈
𝐴 ∅ ∈ 𝑣 → ¬ 𝜑) | 
| 28 | 9, 27 | syl 14 | 
. . . 4
⊢ (((𝑢 ∈ 𝐴 ∧ ∀𝑣 ∈ 𝐴 𝑢 ⊆ 𝑣) ∧ 𝑢 = {∅}) → ¬ 𝜑) | 
| 29 | 28 | olcd 735 | 
. . 3
⊢ (((𝑢 ∈ 𝐴 ∧ ∀𝑣 ∈ 𝐴 𝑢 ⊆ 𝑣) ∧ 𝑢 = {∅}) → (𝜑 ∨ ¬ 𝜑)) | 
| 30 |   | simprr 531 | 
. . . 4
⊢ (((𝑢 ∈ 𝐴 ∧ ∀𝑣 ∈ 𝐴 𝑢 ⊆ 𝑣) ∧ (𝑢 = ∅ ∧ 𝜑)) → 𝜑) | 
| 31 | 30 | orcd 734 | 
. . 3
⊢ (((𝑢 ∈ 𝐴 ∧ ∀𝑣 ∈ 𝐴 𝑢 ⊆ 𝑣) ∧ (𝑢 = ∅ ∧ 𝜑)) → (𝜑 ∨ ¬ 𝜑)) | 
| 32 |   | eqeq1 2203 | 
. . . . . . 7
⊢ (𝑥 = 𝑢 → (𝑥 = {∅} ↔ 𝑢 = {∅})) | 
| 33 |   | eqeq1 2203 | 
. . . . . . . 8
⊢ (𝑥 = 𝑢 → (𝑥 = ∅ ↔ 𝑢 = ∅)) | 
| 34 | 33 | anbi1d 465 | 
. . . . . . 7
⊢ (𝑥 = 𝑢 → ((𝑥 = ∅ ∧ 𝜑) ↔ (𝑢 = ∅ ∧ 𝜑))) | 
| 35 | 32, 34 | orbi12d 794 | 
. . . . . 6
⊢ (𝑥 = 𝑢 → ((𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑)) ↔ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑)))) | 
| 36 | 35, 20 | elrab2 2923 | 
. . . . 5
⊢ (𝑢 ∈ 𝐴 ↔ (𝑢 ∈ {∅, {∅}} ∧ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑)))) | 
| 37 | 36 | simprbi 275 | 
. . . 4
⊢ (𝑢 ∈ 𝐴 → (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))) | 
| 38 | 37 | adantr 276 | 
. . 3
⊢ ((𝑢 ∈ 𝐴 ∧ ∀𝑣 ∈ 𝐴 𝑢 ⊆ 𝑣) → (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))) | 
| 39 | 29, 31, 38 | mpjaodan 799 | 
. 2
⊢ ((𝑢 ∈ 𝐴 ∧ ∀𝑣 ∈ 𝐴 𝑢 ⊆ 𝑣) → (𝜑 ∨ ¬ 𝜑)) | 
| 40 | 39 | rexlimiva 2609 | 
1
⊢
(∃𝑢 ∈
𝐴 ∀𝑣 ∈ 𝐴 𝑢 ⊆ 𝑣 → (𝜑 ∨ ¬ 𝜑)) |