ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reg2exmidlema GIF version

Theorem reg2exmidlema 4518
Description: Lemma for reg2exmid 4520. If 𝐴 has a minimal element (expressed by ), excluded middle follows. (Contributed by Jim Kingdon, 2-Oct-2021.)
Hypothesis
Ref Expression
regexmidlemm.a 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))}
Assertion
Ref Expression
reg2exmidlema (∃𝑢𝐴𝑣𝐴 𝑢𝑣 → (𝜑 ∨ ¬ 𝜑))
Distinct variable groups:   𝜑,𝑥   𝑣,𝐴   𝜑,𝑢,𝑥   𝑣,𝑢
Allowed substitution hints:   𝜑(𝑣)   𝐴(𝑥,𝑢)

Proof of Theorem reg2exmidlema
StepHypRef Expression
1 simplr 525 . . . . . . 7 (((𝑢𝐴 ∧ ∀𝑣𝐴 𝑢𝑣) ∧ 𝑢 = {∅}) → ∀𝑣𝐴 𝑢𝑣)
2 sseq1 3170 . . . . . . . . 9 (𝑢 = {∅} → (𝑢𝑣 ↔ {∅} ⊆ 𝑣))
32ralbidv 2470 . . . . . . . 8 (𝑢 = {∅} → (∀𝑣𝐴 𝑢𝑣 ↔ ∀𝑣𝐴 {∅} ⊆ 𝑣))
43adantl 275 . . . . . . 7 (((𝑢𝐴 ∧ ∀𝑣𝐴 𝑢𝑣) ∧ 𝑢 = {∅}) → (∀𝑣𝐴 𝑢𝑣 ↔ ∀𝑣𝐴 {∅} ⊆ 𝑣))
51, 4mpbid 146 . . . . . 6 (((𝑢𝐴 ∧ ∀𝑣𝐴 𝑢𝑣) ∧ 𝑢 = {∅}) → ∀𝑣𝐴 {∅} ⊆ 𝑣)
6 0ex 4116 . . . . . . . 8 ∅ ∈ V
76snss 3709 . . . . . . 7 (∅ ∈ 𝑣 ↔ {∅} ⊆ 𝑣)
87ralbii 2476 . . . . . 6 (∀𝑣𝐴 ∅ ∈ 𝑣 ↔ ∀𝑣𝐴 {∅} ⊆ 𝑣)
95, 8sylibr 133 . . . . 5 (((𝑢𝐴 ∧ ∀𝑣𝐴 𝑢𝑣) ∧ 𝑢 = {∅}) → ∀𝑣𝐴 ∅ ∈ 𝑣)
10 noel 3418 . . . . . 6 ¬ ∅ ∈ ∅
11 eqid 2170 . . . . . . . . . . . 12 ∅ = ∅
1211jctl 312 . . . . . . . . . . 11 (𝜑 → (∅ = ∅ ∧ 𝜑))
1312olcd 729 . . . . . . . . . 10 (𝜑 → (∅ = {∅} ∨ (∅ = ∅ ∧ 𝜑)))
146prid1 3689 . . . . . . . . . 10 ∅ ∈ {∅, {∅}}
1513, 14jctil 310 . . . . . . . . 9 (𝜑 → (∅ ∈ {∅, {∅}} ∧ (∅ = {∅} ∨ (∅ = ∅ ∧ 𝜑))))
16 eqeq1 2177 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑥 = {∅} ↔ ∅ = {∅}))
17 eqeq1 2177 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑥 = ∅ ↔ ∅ = ∅))
1817anbi1d 462 . . . . . . . . . . 11 (𝑥 = ∅ → ((𝑥 = ∅ ∧ 𝜑) ↔ (∅ = ∅ ∧ 𝜑)))
1916, 18orbi12d 788 . . . . . . . . . 10 (𝑥 = ∅ → ((𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑)) ↔ (∅ = {∅} ∨ (∅ = ∅ ∧ 𝜑))))
20 regexmidlemm.a . . . . . . . . . 10 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))}
2119, 20elrab2 2889 . . . . . . . . 9 (∅ ∈ 𝐴 ↔ (∅ ∈ {∅, {∅}} ∧ (∅ = {∅} ∨ (∅ = ∅ ∧ 𝜑))))
2215, 21sylibr 133 . . . . . . . 8 (𝜑 → ∅ ∈ 𝐴)
23 eleq2 2234 . . . . . . . . 9 (𝑣 = ∅ → (∅ ∈ 𝑣 ↔ ∅ ∈ ∅))
2423rspcv 2830 . . . . . . . 8 (∅ ∈ 𝐴 → (∀𝑣𝐴 ∅ ∈ 𝑣 → ∅ ∈ ∅))
2522, 24syl 14 . . . . . . 7 (𝜑 → (∀𝑣𝐴 ∅ ∈ 𝑣 → ∅ ∈ ∅))
2625com12 30 . . . . . 6 (∀𝑣𝐴 ∅ ∈ 𝑣 → (𝜑 → ∅ ∈ ∅))
2710, 26mtoi 659 . . . . 5 (∀𝑣𝐴 ∅ ∈ 𝑣 → ¬ 𝜑)
289, 27syl 14 . . . 4 (((𝑢𝐴 ∧ ∀𝑣𝐴 𝑢𝑣) ∧ 𝑢 = {∅}) → ¬ 𝜑)
2928olcd 729 . . 3 (((𝑢𝐴 ∧ ∀𝑣𝐴 𝑢𝑣) ∧ 𝑢 = {∅}) → (𝜑 ∨ ¬ 𝜑))
30 simprr 527 . . . 4 (((𝑢𝐴 ∧ ∀𝑣𝐴 𝑢𝑣) ∧ (𝑢 = ∅ ∧ 𝜑)) → 𝜑)
3130orcd 728 . . 3 (((𝑢𝐴 ∧ ∀𝑣𝐴 𝑢𝑣) ∧ (𝑢 = ∅ ∧ 𝜑)) → (𝜑 ∨ ¬ 𝜑))
32 eqeq1 2177 . . . . . . 7 (𝑥 = 𝑢 → (𝑥 = {∅} ↔ 𝑢 = {∅}))
33 eqeq1 2177 . . . . . . . 8 (𝑥 = 𝑢 → (𝑥 = ∅ ↔ 𝑢 = ∅))
3433anbi1d 462 . . . . . . 7 (𝑥 = 𝑢 → ((𝑥 = ∅ ∧ 𝜑) ↔ (𝑢 = ∅ ∧ 𝜑)))
3532, 34orbi12d 788 . . . . . 6 (𝑥 = 𝑢 → ((𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑)) ↔ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))))
3635, 20elrab2 2889 . . . . 5 (𝑢𝐴 ↔ (𝑢 ∈ {∅, {∅}} ∧ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))))
3736simprbi 273 . . . 4 (𝑢𝐴 → (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑)))
3837adantr 274 . . 3 ((𝑢𝐴 ∧ ∀𝑣𝐴 𝑢𝑣) → (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑)))
3929, 31, 38mpjaodan 793 . 2 ((𝑢𝐴 ∧ ∀𝑣𝐴 𝑢𝑣) → (𝜑 ∨ ¬ 𝜑))
4039rexlimiva 2582 1 (∃𝑢𝐴𝑣𝐴 𝑢𝑣 → (𝜑 ∨ ¬ 𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703   = wceq 1348  wcel 2141  wral 2448  wrex 2449  {crab 2452  wss 3121  c0 3414  {csn 3583  {cpr 3584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-nul 4115
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-sn 3589  df-pr 3590
This theorem is referenced by:  reg2exmid  4520  reg3exmid  4564
  Copyright terms: Public domain W3C validator