Proof of Theorem reg2exmidlema
Step | Hyp | Ref
| Expression |
1 | | simplr 525 |
. . . . . . 7
⊢ (((𝑢 ∈ 𝐴 ∧ ∀𝑣 ∈ 𝐴 𝑢 ⊆ 𝑣) ∧ 𝑢 = {∅}) → ∀𝑣 ∈ 𝐴 𝑢 ⊆ 𝑣) |
2 | | sseq1 3170 |
. . . . . . . . 9
⊢ (𝑢 = {∅} → (𝑢 ⊆ 𝑣 ↔ {∅} ⊆ 𝑣)) |
3 | 2 | ralbidv 2470 |
. . . . . . . 8
⊢ (𝑢 = {∅} →
(∀𝑣 ∈ 𝐴 𝑢 ⊆ 𝑣 ↔ ∀𝑣 ∈ 𝐴 {∅} ⊆ 𝑣)) |
4 | 3 | adantl 275 |
. . . . . . 7
⊢ (((𝑢 ∈ 𝐴 ∧ ∀𝑣 ∈ 𝐴 𝑢 ⊆ 𝑣) ∧ 𝑢 = {∅}) → (∀𝑣 ∈ 𝐴 𝑢 ⊆ 𝑣 ↔ ∀𝑣 ∈ 𝐴 {∅} ⊆ 𝑣)) |
5 | 1, 4 | mpbid 146 |
. . . . . 6
⊢ (((𝑢 ∈ 𝐴 ∧ ∀𝑣 ∈ 𝐴 𝑢 ⊆ 𝑣) ∧ 𝑢 = {∅}) → ∀𝑣 ∈ 𝐴 {∅} ⊆ 𝑣) |
6 | | 0ex 4116 |
. . . . . . . 8
⊢ ∅
∈ V |
7 | 6 | snss 3709 |
. . . . . . 7
⊢ (∅
∈ 𝑣 ↔ {∅}
⊆ 𝑣) |
8 | 7 | ralbii 2476 |
. . . . . 6
⊢
(∀𝑣 ∈
𝐴 ∅ ∈ 𝑣 ↔ ∀𝑣 ∈ 𝐴 {∅} ⊆ 𝑣) |
9 | 5, 8 | sylibr 133 |
. . . . 5
⊢ (((𝑢 ∈ 𝐴 ∧ ∀𝑣 ∈ 𝐴 𝑢 ⊆ 𝑣) ∧ 𝑢 = {∅}) → ∀𝑣 ∈ 𝐴 ∅ ∈ 𝑣) |
10 | | noel 3418 |
. . . . . 6
⊢ ¬
∅ ∈ ∅ |
11 | | eqid 2170 |
. . . . . . . . . . . 12
⊢ ∅ =
∅ |
12 | 11 | jctl 312 |
. . . . . . . . . . 11
⊢ (𝜑 → (∅ = ∅ ∧
𝜑)) |
13 | 12 | olcd 729 |
. . . . . . . . . 10
⊢ (𝜑 → (∅ = {∅} ∨
(∅ = ∅ ∧ 𝜑))) |
14 | 6 | prid1 3689 |
. . . . . . . . . 10
⊢ ∅
∈ {∅, {∅}} |
15 | 13, 14 | jctil 310 |
. . . . . . . . 9
⊢ (𝜑 → (∅ ∈ {∅,
{∅}} ∧ (∅ = {∅} ∨ (∅ = ∅ ∧ 𝜑)))) |
16 | | eqeq1 2177 |
. . . . . . . . . . 11
⊢ (𝑥 = ∅ → (𝑥 = {∅} ↔ ∅ =
{∅})) |
17 | | eqeq1 2177 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∅ → (𝑥 = ∅ ↔ ∅ =
∅)) |
18 | 17 | anbi1d 462 |
. . . . . . . . . . 11
⊢ (𝑥 = ∅ → ((𝑥 = ∅ ∧ 𝜑) ↔ (∅ = ∅ ∧ 𝜑))) |
19 | 16, 18 | orbi12d 788 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ → ((𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑)) ↔ (∅ = {∅} ∨ (∅
= ∅ ∧ 𝜑)))) |
20 | | regexmidlemm.a |
. . . . . . . . . 10
⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))} |
21 | 19, 20 | elrab2 2889 |
. . . . . . . . 9
⊢ (∅
∈ 𝐴 ↔ (∅
∈ {∅, {∅}} ∧ (∅ = {∅} ∨ (∅ = ∅
∧ 𝜑)))) |
22 | 15, 21 | sylibr 133 |
. . . . . . . 8
⊢ (𝜑 → ∅ ∈ 𝐴) |
23 | | eleq2 2234 |
. . . . . . . . 9
⊢ (𝑣 = ∅ → (∅
∈ 𝑣 ↔ ∅
∈ ∅)) |
24 | 23 | rspcv 2830 |
. . . . . . . 8
⊢ (∅
∈ 𝐴 →
(∀𝑣 ∈ 𝐴 ∅ ∈ 𝑣 → ∅ ∈
∅)) |
25 | 22, 24 | syl 14 |
. . . . . . 7
⊢ (𝜑 → (∀𝑣 ∈ 𝐴 ∅ ∈ 𝑣 → ∅ ∈
∅)) |
26 | 25 | com12 30 |
. . . . . 6
⊢
(∀𝑣 ∈
𝐴 ∅ ∈ 𝑣 → (𝜑 → ∅ ∈
∅)) |
27 | 10, 26 | mtoi 659 |
. . . . 5
⊢
(∀𝑣 ∈
𝐴 ∅ ∈ 𝑣 → ¬ 𝜑) |
28 | 9, 27 | syl 14 |
. . . 4
⊢ (((𝑢 ∈ 𝐴 ∧ ∀𝑣 ∈ 𝐴 𝑢 ⊆ 𝑣) ∧ 𝑢 = {∅}) → ¬ 𝜑) |
29 | 28 | olcd 729 |
. . 3
⊢ (((𝑢 ∈ 𝐴 ∧ ∀𝑣 ∈ 𝐴 𝑢 ⊆ 𝑣) ∧ 𝑢 = {∅}) → (𝜑 ∨ ¬ 𝜑)) |
30 | | simprr 527 |
. . . 4
⊢ (((𝑢 ∈ 𝐴 ∧ ∀𝑣 ∈ 𝐴 𝑢 ⊆ 𝑣) ∧ (𝑢 = ∅ ∧ 𝜑)) → 𝜑) |
31 | 30 | orcd 728 |
. . 3
⊢ (((𝑢 ∈ 𝐴 ∧ ∀𝑣 ∈ 𝐴 𝑢 ⊆ 𝑣) ∧ (𝑢 = ∅ ∧ 𝜑)) → (𝜑 ∨ ¬ 𝜑)) |
32 | | eqeq1 2177 |
. . . . . . 7
⊢ (𝑥 = 𝑢 → (𝑥 = {∅} ↔ 𝑢 = {∅})) |
33 | | eqeq1 2177 |
. . . . . . . 8
⊢ (𝑥 = 𝑢 → (𝑥 = ∅ ↔ 𝑢 = ∅)) |
34 | 33 | anbi1d 462 |
. . . . . . 7
⊢ (𝑥 = 𝑢 → ((𝑥 = ∅ ∧ 𝜑) ↔ (𝑢 = ∅ ∧ 𝜑))) |
35 | 32, 34 | orbi12d 788 |
. . . . . 6
⊢ (𝑥 = 𝑢 → ((𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑)) ↔ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑)))) |
36 | 35, 20 | elrab2 2889 |
. . . . 5
⊢ (𝑢 ∈ 𝐴 ↔ (𝑢 ∈ {∅, {∅}} ∧ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑)))) |
37 | 36 | simprbi 273 |
. . . 4
⊢ (𝑢 ∈ 𝐴 → (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))) |
38 | 37 | adantr 274 |
. . 3
⊢ ((𝑢 ∈ 𝐴 ∧ ∀𝑣 ∈ 𝐴 𝑢 ⊆ 𝑣) → (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))) |
39 | 29, 31, 38 | mpjaodan 793 |
. 2
⊢ ((𝑢 ∈ 𝐴 ∧ ∀𝑣 ∈ 𝐴 𝑢 ⊆ 𝑣) → (𝜑 ∨ ¬ 𝜑)) |
40 | 39 | rexlimiva 2582 |
1
⊢
(∃𝑢 ∈
𝐴 ∀𝑣 ∈ 𝐴 𝑢 ⊆ 𝑣 → (𝜑 ∨ ¬ 𝜑)) |