ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reg2exmidlema GIF version

Theorem reg2exmidlema 4511
Description: Lemma for reg2exmid 4513. If 𝐴 has a minimal element (expressed by ), excluded middle follows. (Contributed by Jim Kingdon, 2-Oct-2021.)
Hypothesis
Ref Expression
regexmidlemm.a 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))}
Assertion
Ref Expression
reg2exmidlema (∃𝑢𝐴𝑣𝐴 𝑢𝑣 → (𝜑 ∨ ¬ 𝜑))
Distinct variable groups:   𝜑,𝑥   𝑣,𝐴   𝜑,𝑢,𝑥   𝑣,𝑢
Allowed substitution hints:   𝜑(𝑣)   𝐴(𝑥,𝑢)

Proof of Theorem reg2exmidlema
StepHypRef Expression
1 simplr 520 . . . . . . 7 (((𝑢𝐴 ∧ ∀𝑣𝐴 𝑢𝑣) ∧ 𝑢 = {∅}) → ∀𝑣𝐴 𝑢𝑣)
2 sseq1 3165 . . . . . . . . 9 (𝑢 = {∅} → (𝑢𝑣 ↔ {∅} ⊆ 𝑣))
32ralbidv 2466 . . . . . . . 8 (𝑢 = {∅} → (∀𝑣𝐴 𝑢𝑣 ↔ ∀𝑣𝐴 {∅} ⊆ 𝑣))
43adantl 275 . . . . . . 7 (((𝑢𝐴 ∧ ∀𝑣𝐴 𝑢𝑣) ∧ 𝑢 = {∅}) → (∀𝑣𝐴 𝑢𝑣 ↔ ∀𝑣𝐴 {∅} ⊆ 𝑣))
51, 4mpbid 146 . . . . . 6 (((𝑢𝐴 ∧ ∀𝑣𝐴 𝑢𝑣) ∧ 𝑢 = {∅}) → ∀𝑣𝐴 {∅} ⊆ 𝑣)
6 0ex 4109 . . . . . . . 8 ∅ ∈ V
76snss 3702 . . . . . . 7 (∅ ∈ 𝑣 ↔ {∅} ⊆ 𝑣)
87ralbii 2472 . . . . . 6 (∀𝑣𝐴 ∅ ∈ 𝑣 ↔ ∀𝑣𝐴 {∅} ⊆ 𝑣)
95, 8sylibr 133 . . . . 5 (((𝑢𝐴 ∧ ∀𝑣𝐴 𝑢𝑣) ∧ 𝑢 = {∅}) → ∀𝑣𝐴 ∅ ∈ 𝑣)
10 noel 3413 . . . . . 6 ¬ ∅ ∈ ∅
11 eqid 2165 . . . . . . . . . . . 12 ∅ = ∅
1211jctl 312 . . . . . . . . . . 11 (𝜑 → (∅ = ∅ ∧ 𝜑))
1312olcd 724 . . . . . . . . . 10 (𝜑 → (∅ = {∅} ∨ (∅ = ∅ ∧ 𝜑)))
146prid1 3682 . . . . . . . . . 10 ∅ ∈ {∅, {∅}}
1513, 14jctil 310 . . . . . . . . 9 (𝜑 → (∅ ∈ {∅, {∅}} ∧ (∅ = {∅} ∨ (∅ = ∅ ∧ 𝜑))))
16 eqeq1 2172 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑥 = {∅} ↔ ∅ = {∅}))
17 eqeq1 2172 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑥 = ∅ ↔ ∅ = ∅))
1817anbi1d 461 . . . . . . . . . . 11 (𝑥 = ∅ → ((𝑥 = ∅ ∧ 𝜑) ↔ (∅ = ∅ ∧ 𝜑)))
1916, 18orbi12d 783 . . . . . . . . . 10 (𝑥 = ∅ → ((𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑)) ↔ (∅ = {∅} ∨ (∅ = ∅ ∧ 𝜑))))
20 regexmidlemm.a . . . . . . . . . 10 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))}
2119, 20elrab2 2885 . . . . . . . . 9 (∅ ∈ 𝐴 ↔ (∅ ∈ {∅, {∅}} ∧ (∅ = {∅} ∨ (∅ = ∅ ∧ 𝜑))))
2215, 21sylibr 133 . . . . . . . 8 (𝜑 → ∅ ∈ 𝐴)
23 eleq2 2230 . . . . . . . . 9 (𝑣 = ∅ → (∅ ∈ 𝑣 ↔ ∅ ∈ ∅))
2423rspcv 2826 . . . . . . . 8 (∅ ∈ 𝐴 → (∀𝑣𝐴 ∅ ∈ 𝑣 → ∅ ∈ ∅))
2522, 24syl 14 . . . . . . 7 (𝜑 → (∀𝑣𝐴 ∅ ∈ 𝑣 → ∅ ∈ ∅))
2625com12 30 . . . . . 6 (∀𝑣𝐴 ∅ ∈ 𝑣 → (𝜑 → ∅ ∈ ∅))
2710, 26mtoi 654 . . . . 5 (∀𝑣𝐴 ∅ ∈ 𝑣 → ¬ 𝜑)
289, 27syl 14 . . . 4 (((𝑢𝐴 ∧ ∀𝑣𝐴 𝑢𝑣) ∧ 𝑢 = {∅}) → ¬ 𝜑)
2928olcd 724 . . 3 (((𝑢𝐴 ∧ ∀𝑣𝐴 𝑢𝑣) ∧ 𝑢 = {∅}) → (𝜑 ∨ ¬ 𝜑))
30 simprr 522 . . . 4 (((𝑢𝐴 ∧ ∀𝑣𝐴 𝑢𝑣) ∧ (𝑢 = ∅ ∧ 𝜑)) → 𝜑)
3130orcd 723 . . 3 (((𝑢𝐴 ∧ ∀𝑣𝐴 𝑢𝑣) ∧ (𝑢 = ∅ ∧ 𝜑)) → (𝜑 ∨ ¬ 𝜑))
32 eqeq1 2172 . . . . . . 7 (𝑥 = 𝑢 → (𝑥 = {∅} ↔ 𝑢 = {∅}))
33 eqeq1 2172 . . . . . . . 8 (𝑥 = 𝑢 → (𝑥 = ∅ ↔ 𝑢 = ∅))
3433anbi1d 461 . . . . . . 7 (𝑥 = 𝑢 → ((𝑥 = ∅ ∧ 𝜑) ↔ (𝑢 = ∅ ∧ 𝜑)))
3532, 34orbi12d 783 . . . . . 6 (𝑥 = 𝑢 → ((𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑)) ↔ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))))
3635, 20elrab2 2885 . . . . 5 (𝑢𝐴 ↔ (𝑢 ∈ {∅, {∅}} ∧ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))))
3736simprbi 273 . . . 4 (𝑢𝐴 → (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑)))
3837adantr 274 . . 3 ((𝑢𝐴 ∧ ∀𝑣𝐴 𝑢𝑣) → (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑)))
3929, 31, 38mpjaodan 788 . 2 ((𝑢𝐴 ∧ ∀𝑣𝐴 𝑢𝑣) → (𝜑 ∨ ¬ 𝜑))
4039rexlimiva 2578 1 (∃𝑢𝐴𝑣𝐴 𝑢𝑣 → (𝜑 ∨ ¬ 𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698   = wceq 1343  wcel 2136  wral 2444  wrex 2445  {crab 2448  wss 3116  c0 3409  {csn 3576  {cpr 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-nul 4108
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-sn 3582  df-pr 3583
This theorem is referenced by:  reg2exmid  4513  reg3exmid  4557
  Copyright terms: Public domain W3C validator