![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > jctil | GIF version |
Description: Inference conjoining a theorem to left of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
jctil.1 | ⊢ (𝜑 → 𝜓) |
jctil.2 | ⊢ 𝜒 |
Ref | Expression |
---|---|
jctil | ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctil.2 | . . 3 ⊢ 𝜒 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜒) |
3 | jctil.1 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 2, 3 | jca 306 | 1 ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: jctl 314 ddifnel 3290 unidif 3867 iunxdif2 3961 exss 4256 reg2exmidlema 4566 limom 4646 xpiindim 4799 relssres 4980 funco 5294 nfunsn 5589 fliftcnv 5838 fo1stresm 6214 fo2ndresm 6215 dftpos3 6315 tfri1d 6388 rdgtfr 6427 rdgruledefgg 6428 frectfr 6453 elixpsn 6789 mapxpen 6904 phplem2 6909 sbthlem2 7017 sbthlemi3 7018 djuss 7129 caseinl 7150 caseinr 7151 exmidfodomrlemr 7262 exmidfodomrlemrALT 7263 2omotaplemap 7317 nqprrnd 7603 nqprxx 7606 ltexprlempr 7668 recexprlempr 7692 cauappcvgprlemcl 7713 caucvgprlemcl 7736 caucvgprprlemcl 7764 suplocsrlempr 7867 lemulge11 8885 nn0ge2m1nn 9300 frecfzennn 10497 wrdlenge2n0 10949 reccn2ap 11456 demoivreALT 11917 pcdiv 12440 idghm 13329 subrgid 13719 mulgghm2 14096 topcld 14277 metrest 14674 pwle2 15489 |
Copyright terms: Public domain | W3C validator |