| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jctil | GIF version | ||
| Description: Inference conjoining a theorem to left of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| jctil.1 | ⊢ (𝜑 → 𝜓) |
| jctil.2 | ⊢ 𝜒 |
| Ref | Expression |
|---|---|
| jctil | ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctil.2 | . . 3 ⊢ 𝜒 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜒) |
| 3 | jctil.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 4 | 2, 3 | jca 306 | 1 ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: jctl 314 ddifnel 3306 unidif 3885 iunxdif2 3979 exss 4276 reg2exmidlema 4587 limom 4667 xpiindim 4820 relssres 5003 funco 5317 nfunsn 5621 fliftcnv 5874 fo1stresm 6257 fo2ndresm 6258 dftpos3 6358 tfri1d 6431 rdgtfr 6470 rdgruledefgg 6471 frectfr 6496 elixpsn 6832 mapxpen 6957 phplem2 6962 sbthlem2 7072 sbthlemi3 7073 djuss 7184 caseinl 7205 caseinr 7206 exmidfodomrlemr 7323 exmidfodomrlemrALT 7324 2omotaplemap 7382 nqprrnd 7669 nqprxx 7672 ltexprlempr 7734 recexprlempr 7758 cauappcvgprlemcl 7779 caucvgprlemcl 7802 caucvgprprlemcl 7830 suplocsrlempr 7933 lemulge11 8952 nn0ge2m1nn 9368 frecfzennn 10584 wrdlenge2n0 11042 swrdnd 11126 reccn2ap 11674 demoivreALT 12135 pcdiv 12675 idghm 13645 subrgid 14035 mulgghm2 14420 topcld 14631 metrest 15028 2lgs 15631 pwle2 16050 |
| Copyright terms: Public domain | W3C validator |