Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > jctil | GIF version |
Description: Inference conjoining a theorem to left of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
jctil.1 | ⊢ (𝜑 → 𝜓) |
jctil.2 | ⊢ 𝜒 |
Ref | Expression |
---|---|
jctil | ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctil.2 | . . 3 ⊢ 𝜒 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜒) |
3 | jctil.1 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 2, 3 | jca 304 | 1 ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 |
This theorem is referenced by: jctl 312 ddifnel 3258 unidif 3828 iunxdif2 3921 exss 4212 reg2exmidlema 4518 limom 4598 xpiindim 4748 relssres 4929 funco 5238 nfunsn 5530 fliftcnv 5774 fo1stresm 6140 fo2ndresm 6141 dftpos3 6241 tfri1d 6314 rdgtfr 6353 rdgruledefgg 6354 frectfr 6379 elixpsn 6713 mapxpen 6826 phplem2 6831 sbthlem2 6935 sbthlemi3 6936 djuss 7047 caseinl 7068 caseinr 7069 exmidfodomrlemr 7179 exmidfodomrlemrALT 7180 nqprrnd 7505 nqprxx 7508 ltexprlempr 7570 recexprlempr 7594 cauappcvgprlemcl 7615 caucvgprlemcl 7638 caucvgprprlemcl 7666 suplocsrlempr 7769 lemulge11 8782 nn0ge2m1nn 9195 frecfzennn 10382 reccn2ap 11276 demoivreALT 11736 pcdiv 12256 topcld 12903 metrest 13300 pwle2 14031 |
Copyright terms: Public domain | W3C validator |