Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > jctil | GIF version |
Description: Inference conjoining a theorem to left of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
jctil.1 | ⊢ (𝜑 → 𝜓) |
jctil.2 | ⊢ 𝜒 |
Ref | Expression |
---|---|
jctil | ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctil.2 | . . 3 ⊢ 𝜒 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜒) |
3 | jctil.1 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 2, 3 | jca 304 | 1 ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 |
This theorem is referenced by: jctl 312 ddifnel 3253 unidif 3821 iunxdif2 3914 exss 4205 reg2exmidlema 4511 limom 4591 xpiindim 4741 relssres 4922 funco 5228 nfunsn 5520 fliftcnv 5763 fo1stresm 6129 fo2ndresm 6130 dftpos3 6230 tfri1d 6303 rdgtfr 6342 rdgruledefgg 6343 frectfr 6368 elixpsn 6701 mapxpen 6814 phplem2 6819 sbthlem2 6923 sbthlemi3 6924 djuss 7035 caseinl 7056 caseinr 7057 exmidfodomrlemr 7158 exmidfodomrlemrALT 7159 nqprrnd 7484 nqprxx 7487 ltexprlempr 7549 recexprlempr 7573 cauappcvgprlemcl 7594 caucvgprlemcl 7617 caucvgprprlemcl 7645 suplocsrlempr 7748 lemulge11 8761 nn0ge2m1nn 9174 frecfzennn 10361 reccn2ap 11254 demoivreALT 11714 pcdiv 12234 topcld 12749 metrest 13146 pwle2 13878 |
Copyright terms: Public domain | W3C validator |