| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jctil | GIF version | ||
| Description: Inference conjoining a theorem to left of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| jctil.1 | ⊢ (𝜑 → 𝜓) |
| jctil.2 | ⊢ 𝜒 |
| Ref | Expression |
|---|---|
| jctil | ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctil.2 | . . 3 ⊢ 𝜒 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜒) |
| 3 | jctil.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 4 | 2, 3 | jca 306 | 1 ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: jctl 314 ddifnel 3294 unidif 3871 iunxdif2 3965 exss 4260 reg2exmidlema 4570 limom 4650 xpiindim 4803 relssres 4984 funco 5298 nfunsn 5593 fliftcnv 5842 fo1stresm 6219 fo2ndresm 6220 dftpos3 6320 tfri1d 6393 rdgtfr 6432 rdgruledefgg 6433 frectfr 6458 elixpsn 6794 mapxpen 6909 phplem2 6914 sbthlem2 7024 sbthlemi3 7025 djuss 7136 caseinl 7157 caseinr 7158 exmidfodomrlemr 7269 exmidfodomrlemrALT 7270 2omotaplemap 7324 nqprrnd 7610 nqprxx 7613 ltexprlempr 7675 recexprlempr 7699 cauappcvgprlemcl 7720 caucvgprlemcl 7743 caucvgprprlemcl 7771 suplocsrlempr 7874 lemulge11 8893 nn0ge2m1nn 9309 frecfzennn 10518 wrdlenge2n0 10970 reccn2ap 11478 demoivreALT 11939 pcdiv 12471 idghm 13389 subrgid 13779 mulgghm2 14164 topcld 14345 metrest 14742 2lgs 15345 pwle2 15643 |
| Copyright terms: Public domain | W3C validator |