| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jctil | GIF version | ||
| Description: Inference conjoining a theorem to left of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| jctil.1 | ⊢ (𝜑 → 𝜓) |
| jctil.2 | ⊢ 𝜒 |
| Ref | Expression |
|---|---|
| jctil | ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctil.2 | . . 3 ⊢ 𝜒 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜒) |
| 3 | jctil.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 4 | 2, 3 | jca 306 | 1 ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: jctl 314 ddifnel 3335 unidif 3919 iunxdif2 4013 exss 4312 reg2exmidlema 4623 limom 4703 xpiindim 4856 relssres 5039 funco 5354 nfunsn 5658 fliftcnv 5912 fo1stresm 6297 fo2ndresm 6298 dftpos3 6398 tfri1d 6471 rdgtfr 6510 rdgruledefgg 6511 frectfr 6536 elixpsn 6872 mapxpen 6997 phplem2 7002 sbthlem2 7113 sbthlemi3 7114 djuss 7225 caseinl 7246 caseinr 7247 exmidfodomrlemr 7368 exmidfodomrlemrALT 7369 2omotaplemap 7431 nqprrnd 7718 nqprxx 7721 ltexprlempr 7783 recexprlempr 7807 cauappcvgprlemcl 7828 caucvgprlemcl 7851 caucvgprprlemcl 7879 suplocsrlempr 7982 lemulge11 9001 nn0ge2m1nn 9417 frecfzennn 10635 wrdlenge2n0 11093 swrdnd 11177 reccn2ap 11810 demoivreALT 12271 pcdiv 12811 idghm 13782 subrgid 14172 mulgghm2 14557 topcld 14768 metrest 15165 2lgs 15768 pwle2 16295 |
| Copyright terms: Public domain | W3C validator |