![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > jctil | GIF version |
Description: Inference conjoining a theorem to left of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
jctil.1 | ⊢ (𝜑 → 𝜓) |
jctil.2 | ⊢ 𝜒 |
Ref | Expression |
---|---|
jctil | ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctil.2 | . . 3 ⊢ 𝜒 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜒) |
3 | jctil.1 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 2, 3 | jca 301 | 1 ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia3 107 |
This theorem is referenced by: jctl 308 ddifnel 3132 unidif 3691 iunxdif2 3784 exss 4063 reg2exmidlema 4363 limom 4441 xpiindim 4586 relssres 4763 funco 5067 nfunsn 5351 fliftcnv 5588 fo1stresm 5946 fo2ndresm 5947 dftpos3 6041 tfri1d 6114 rdgtfr 6153 rdgruledefgg 6154 frectfr 6179 elixpsn 6506 mapxpen 6618 phplem2 6623 sbthlem2 6721 sbthlemi3 6722 djuss 6815 caseinl 6836 exmidfodomrlemr 6889 exmidfodomrlemrALT 6890 nqprrnd 7163 nqprxx 7166 ltexprlempr 7228 recexprlempr 7252 cauappcvgprlemcl 7273 caucvgprlemcl 7296 caucvgprprlemcl 7324 lemulge11 8388 nn0ge2m1nn 8794 frecfzennn 9894 demoivreALT 11124 topcld 11870 |
Copyright terms: Public domain | W3C validator |