Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > jctil | GIF version |
Description: Inference conjoining a theorem to left of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
jctil.1 | ⊢ (𝜑 → 𝜓) |
jctil.2 | ⊢ 𝜒 |
Ref | Expression |
---|---|
jctil | ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctil.2 | . . 3 ⊢ 𝜒 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜒) |
3 | jctil.1 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 2, 3 | jca 304 | 1 ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 |
This theorem is referenced by: jctl 312 ddifnel 3258 unidif 3826 iunxdif2 3919 exss 4210 reg2exmidlema 4516 limom 4596 xpiindim 4746 relssres 4927 funco 5236 nfunsn 5528 fliftcnv 5772 fo1stresm 6138 fo2ndresm 6139 dftpos3 6239 tfri1d 6312 rdgtfr 6351 rdgruledefgg 6352 frectfr 6377 elixpsn 6711 mapxpen 6824 phplem2 6829 sbthlem2 6933 sbthlemi3 6934 djuss 7045 caseinl 7066 caseinr 7067 exmidfodomrlemr 7172 exmidfodomrlemrALT 7173 nqprrnd 7498 nqprxx 7501 ltexprlempr 7563 recexprlempr 7587 cauappcvgprlemcl 7608 caucvgprlemcl 7631 caucvgprprlemcl 7659 suplocsrlempr 7762 lemulge11 8775 nn0ge2m1nn 9188 frecfzennn 10375 reccn2ap 11269 demoivreALT 11729 pcdiv 12249 topcld 12868 metrest 13265 pwle2 13996 |
Copyright terms: Public domain | W3C validator |