| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jctil | GIF version | ||
| Description: Inference conjoining a theorem to left of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| jctil.1 | ⊢ (𝜑 → 𝜓) |
| jctil.2 | ⊢ 𝜒 |
| Ref | Expression |
|---|---|
| jctil | ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctil.2 | . . 3 ⊢ 𝜒 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜒) |
| 3 | jctil.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 4 | 2, 3 | jca 306 | 1 ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: jctl 314 ddifnel 3335 unidif 3920 iunxdif2 4014 exss 4313 reg2exmidlema 4626 limom 4706 xpiindim 4859 relssres 5043 funco 5358 nfunsn 5666 fliftcnv 5925 fo1stresm 6313 fo2ndresm 6314 dftpos3 6414 tfri1d 6487 rdgtfr 6526 rdgruledefgg 6527 frectfr 6552 elixpsn 6890 mapxpen 7017 phplem2 7022 sbthlem2 7133 sbthlemi3 7134 djuss 7245 caseinl 7266 caseinr 7267 exmidfodomrlemr 7388 exmidfodomrlemrALT 7389 2omotaplemap 7451 nqprrnd 7738 nqprxx 7741 ltexprlempr 7803 recexprlempr 7827 cauappcvgprlemcl 7848 caucvgprlemcl 7871 caucvgprprlemcl 7899 suplocsrlempr 8002 lemulge11 9021 nn0ge2m1nn 9437 frecfzennn 10656 wrdlenge2n0 11115 swrdnd 11199 reccn2ap 11832 demoivreALT 12293 pcdiv 12833 idghm 13804 subrgid 14195 mulgghm2 14580 topcld 14791 metrest 15188 2lgs 15791 pwle2 16393 |
| Copyright terms: Public domain | W3C validator |