ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0n0n1ge2 GIF version

Theorem nn0n0n1ge2 9229
Description: A nonnegative integer which is neither 0 nor 1 is greater than or equal to 2. (Contributed by Alexander van der Vekens, 6-Dec-2017.)
Assertion
Ref Expression
nn0n0n1ge2 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁)

Proof of Theorem nn0n0n1ge2
StepHypRef Expression
1 nn0cn 9095 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
2 1cnd 7889 . . . . . 6 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
31, 2, 2subsub4d 8212 . . . . 5 (𝑁 ∈ ℕ0 → ((𝑁 − 1) − 1) = (𝑁 − (1 + 1)))
4 1p1e2 8945 . . . . . 6 (1 + 1) = 2
54oveq2i 5832 . . . . 5 (𝑁 − (1 + 1)) = (𝑁 − 2)
63, 5eqtr2di 2207 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 − 2) = ((𝑁 − 1) − 1))
763ad2ant1 1003 . . 3 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 − 2) = ((𝑁 − 1) − 1))
8 3simpa 979 . . . . . . 7 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 ∈ ℕ0𝑁 ≠ 0))
9 elnnne0 9099 . . . . . . 7 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
108, 9sylibr 133 . . . . . 6 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 𝑁 ∈ ℕ)
11 nnm1nn0 9126 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
1210, 11syl 14 . . . . 5 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 − 1) ∈ ℕ0)
131, 2subeq0ad 8191 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((𝑁 − 1) = 0 ↔ 𝑁 = 1))
1413biimpd 143 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((𝑁 − 1) = 0 → 𝑁 = 1))
1514necon3d 2371 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 ≠ 1 → (𝑁 − 1) ≠ 0))
1615imp 123 . . . . . 6 ((𝑁 ∈ ℕ0𝑁 ≠ 1) → (𝑁 − 1) ≠ 0)
17163adant2 1001 . . . . 5 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 − 1) ≠ 0)
18 elnnne0 9099 . . . . 5 ((𝑁 − 1) ∈ ℕ ↔ ((𝑁 − 1) ∈ ℕ0 ∧ (𝑁 − 1) ≠ 0))
1912, 17, 18sylanbrc 414 . . . 4 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 − 1) ∈ ℕ)
20 nnm1nn0 9126 . . . 4 ((𝑁 − 1) ∈ ℕ → ((𝑁 − 1) − 1) ∈ ℕ0)
2119, 20syl 14 . . 3 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → ((𝑁 − 1) − 1) ∈ ℕ0)
227, 21eqeltrd 2234 . 2 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 − 2) ∈ ℕ0)
23 2nn0 9102 . . . . 5 2 ∈ ℕ0
2423jctl 312 . . . 4 (𝑁 ∈ ℕ0 → (2 ∈ ℕ0𝑁 ∈ ℕ0))
25243ad2ant1 1003 . . 3 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (2 ∈ ℕ0𝑁 ∈ ℕ0))
26 nn0sub 9228 . . 3 ((2 ∈ ℕ0𝑁 ∈ ℕ0) → (2 ≤ 𝑁 ↔ (𝑁 − 2) ∈ ℕ0))
2725, 26syl 14 . 2 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (2 ≤ 𝑁 ↔ (𝑁 − 2) ∈ ℕ0))
2822, 27mpbird 166 1 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1335  wcel 2128  wne 2327   class class class wbr 3965  (class class class)co 5821  0cc0 7727  1c1 7728   + caddc 7730  cle 7908  cmin 8041  cn 8828  2c2 8879  0cn0 9085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-cnex 7818  ax-resscn 7819  ax-1cn 7820  ax-1re 7821  ax-icn 7822  ax-addcl 7823  ax-addrcl 7824  ax-mulcl 7825  ax-addcom 7827  ax-addass 7829  ax-distr 7831  ax-i2m1 7832  ax-0lt1 7833  ax-0id 7835  ax-rnegex 7836  ax-cnre 7838  ax-pre-ltirr 7839  ax-pre-ltwlin 7840  ax-pre-lttrn 7841  ax-pre-ltadd 7843
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-br 3966  df-opab 4026  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-iota 5134  df-fun 5171  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-pnf 7909  df-mnf 7910  df-xr 7911  df-ltxr 7912  df-le 7913  df-sub 8043  df-neg 8044  df-inn 8829  df-2 8887  df-n0 9086  df-z 9163
This theorem is referenced by:  nn0n0n1ge2b  9238
  Copyright terms: Public domain W3C validator