ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0n0n1ge2 GIF version

Theorem nn0n0n1ge2 9413
Description: A nonnegative integer which is neither 0 nor 1 is greater than or equal to 2. (Contributed by Alexander van der Vekens, 6-Dec-2017.)
Assertion
Ref Expression
nn0n0n1ge2 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁)

Proof of Theorem nn0n0n1ge2
StepHypRef Expression
1 nn0cn 9276 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
2 1cnd 8059 . . . . . 6 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
31, 2, 2subsub4d 8385 . . . . 5 (𝑁 ∈ ℕ0 → ((𝑁 − 1) − 1) = (𝑁 − (1 + 1)))
4 1p1e2 9124 . . . . . 6 (1 + 1) = 2
54oveq2i 5936 . . . . 5 (𝑁 − (1 + 1)) = (𝑁 − 2)
63, 5eqtr2di 2246 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 − 2) = ((𝑁 − 1) − 1))
763ad2ant1 1020 . . 3 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 − 2) = ((𝑁 − 1) − 1))
8 3simpa 996 . . . . . . 7 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 ∈ ℕ0𝑁 ≠ 0))
9 elnnne0 9280 . . . . . . 7 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
108, 9sylibr 134 . . . . . 6 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 𝑁 ∈ ℕ)
11 nnm1nn0 9307 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
1210, 11syl 14 . . . . 5 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 − 1) ∈ ℕ0)
131, 2subeq0ad 8364 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((𝑁 − 1) = 0 ↔ 𝑁 = 1))
1413biimpd 144 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((𝑁 − 1) = 0 → 𝑁 = 1))
1514necon3d 2411 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 ≠ 1 → (𝑁 − 1) ≠ 0))
1615imp 124 . . . . . 6 ((𝑁 ∈ ℕ0𝑁 ≠ 1) → (𝑁 − 1) ≠ 0)
17163adant2 1018 . . . . 5 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 − 1) ≠ 0)
18 elnnne0 9280 . . . . 5 ((𝑁 − 1) ∈ ℕ ↔ ((𝑁 − 1) ∈ ℕ0 ∧ (𝑁 − 1) ≠ 0))
1912, 17, 18sylanbrc 417 . . . 4 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 − 1) ∈ ℕ)
20 nnm1nn0 9307 . . . 4 ((𝑁 − 1) ∈ ℕ → ((𝑁 − 1) − 1) ∈ ℕ0)
2119, 20syl 14 . . 3 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → ((𝑁 − 1) − 1) ∈ ℕ0)
227, 21eqeltrd 2273 . 2 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 − 2) ∈ ℕ0)
23 2nn0 9283 . . . . 5 2 ∈ ℕ0
2423jctl 314 . . . 4 (𝑁 ∈ ℕ0 → (2 ∈ ℕ0𝑁 ∈ ℕ0))
25243ad2ant1 1020 . . 3 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (2 ∈ ℕ0𝑁 ∈ ℕ0))
26 nn0sub 9409 . . 3 ((2 ∈ ℕ0𝑁 ∈ ℕ0) → (2 ≤ 𝑁 ↔ (𝑁 − 2) ∈ ℕ0))
2725, 26syl 14 . 2 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (2 ≤ 𝑁 ↔ (𝑁 − 2) ∈ ℕ0))
2822, 27mpbird 167 1 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  wne 2367   class class class wbr 4034  (class class class)co 5925  0cc0 7896  1c1 7897   + caddc 7899  cle 8079  cmin 8214  cn 9007  2c2 9058  0cn0 9266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344
This theorem is referenced by:  nn0n0n1ge2b  9422
  Copyright terms: Public domain W3C validator