ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0n0n1ge2 GIF version

Theorem nn0n0n1ge2 9145
Description: A nonnegative integer which is neither 0 nor 1 is greater than or equal to 2. (Contributed by Alexander van der Vekens, 6-Dec-2017.)
Assertion
Ref Expression
nn0n0n1ge2 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁)

Proof of Theorem nn0n0n1ge2
StepHypRef Expression
1 nn0cn 9011 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
2 1cnd 7806 . . . . . 6 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
31, 2, 2subsub4d 8128 . . . . 5 (𝑁 ∈ ℕ0 → ((𝑁 − 1) − 1) = (𝑁 − (1 + 1)))
4 1p1e2 8861 . . . . . 6 (1 + 1) = 2
54oveq2i 5793 . . . . 5 (𝑁 − (1 + 1)) = (𝑁 − 2)
63, 5eqtr2di 2190 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 − 2) = ((𝑁 − 1) − 1))
763ad2ant1 1003 . . 3 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 − 2) = ((𝑁 − 1) − 1))
8 3simpa 979 . . . . . . 7 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 ∈ ℕ0𝑁 ≠ 0))
9 elnnne0 9015 . . . . . . 7 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
108, 9sylibr 133 . . . . . 6 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 𝑁 ∈ ℕ)
11 nnm1nn0 9042 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
1210, 11syl 14 . . . . 5 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 − 1) ∈ ℕ0)
131, 2subeq0ad 8107 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((𝑁 − 1) = 0 ↔ 𝑁 = 1))
1413biimpd 143 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((𝑁 − 1) = 0 → 𝑁 = 1))
1514necon3d 2353 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 ≠ 1 → (𝑁 − 1) ≠ 0))
1615imp 123 . . . . . 6 ((𝑁 ∈ ℕ0𝑁 ≠ 1) → (𝑁 − 1) ≠ 0)
17163adant2 1001 . . . . 5 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 − 1) ≠ 0)
18 elnnne0 9015 . . . . 5 ((𝑁 − 1) ∈ ℕ ↔ ((𝑁 − 1) ∈ ℕ0 ∧ (𝑁 − 1) ≠ 0))
1912, 17, 18sylanbrc 414 . . . 4 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 − 1) ∈ ℕ)
20 nnm1nn0 9042 . . . 4 ((𝑁 − 1) ∈ ℕ → ((𝑁 − 1) − 1) ∈ ℕ0)
2119, 20syl 14 . . 3 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → ((𝑁 − 1) − 1) ∈ ℕ0)
227, 21eqeltrd 2217 . 2 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 − 2) ∈ ℕ0)
23 2nn0 9018 . . . . 5 2 ∈ ℕ0
2423jctl 312 . . . 4 (𝑁 ∈ ℕ0 → (2 ∈ ℕ0𝑁 ∈ ℕ0))
25243ad2ant1 1003 . . 3 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (2 ∈ ℕ0𝑁 ∈ ℕ0))
26 nn0sub 9144 . . 3 ((2 ∈ ℕ0𝑁 ∈ ℕ0) → (2 ≤ 𝑁 ↔ (𝑁 − 2) ∈ ℕ0))
2725, 26syl 14 . 2 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (2 ≤ 𝑁 ↔ (𝑁 − 2) ∈ ℕ0))
2822, 27mpbird 166 1 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wcel 1481  wne 2309   class class class wbr 3937  (class class class)co 5782  0cc0 7644  1c1 7645   + caddc 7647  cle 7825  cmin 7957  cn 8744  2c2 8795  0cn0 9001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-2 8803  df-n0 9002  df-z 9079
This theorem is referenced by:  nn0n0n1ge2b  9154
  Copyright terms: Public domain W3C validator