Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0n0n1ge2 | GIF version |
Description: A nonnegative integer which is neither 0 nor 1 is greater than or equal to 2. (Contributed by Alexander van der Vekens, 6-Dec-2017.) |
Ref | Expression |
---|---|
nn0n0n1ge2 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0cn 9095 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
2 | 1cnd 7889 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℂ) | |
3 | 1, 2, 2 | subsub4d 8212 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 − 1) − 1) = (𝑁 − (1 + 1))) |
4 | 1p1e2 8945 | . . . . . 6 ⊢ (1 + 1) = 2 | |
5 | 4 | oveq2i 5832 | . . . . 5 ⊢ (𝑁 − (1 + 1)) = (𝑁 − 2) |
6 | 3, 5 | eqtr2di 2207 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑁 − 2) = ((𝑁 − 1) − 1)) |
7 | 6 | 3ad2ant1 1003 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 − 2) = ((𝑁 − 1) − 1)) |
8 | 3simpa 979 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) | |
9 | elnnne0 9099 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) | |
10 | 8, 9 | sylibr 133 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 𝑁 ∈ ℕ) |
11 | nnm1nn0 9126 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
12 | 10, 11 | syl 14 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 − 1) ∈ ℕ0) |
13 | 1, 2 | subeq0ad 8191 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 − 1) = 0 ↔ 𝑁 = 1)) |
14 | 13 | biimpd 143 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 − 1) = 0 → 𝑁 = 1)) |
15 | 14 | necon3d 2371 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≠ 1 → (𝑁 − 1) ≠ 0)) |
16 | 15 | imp 123 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 1) → (𝑁 − 1) ≠ 0) |
17 | 16 | 3adant2 1001 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 − 1) ≠ 0) |
18 | elnnne0 9099 | . . . . 5 ⊢ ((𝑁 − 1) ∈ ℕ ↔ ((𝑁 − 1) ∈ ℕ0 ∧ (𝑁 − 1) ≠ 0)) | |
19 | 12, 17, 18 | sylanbrc 414 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 − 1) ∈ ℕ) |
20 | nnm1nn0 9126 | . . . 4 ⊢ ((𝑁 − 1) ∈ ℕ → ((𝑁 − 1) − 1) ∈ ℕ0) | |
21 | 19, 20 | syl 14 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → ((𝑁 − 1) − 1) ∈ ℕ0) |
22 | 7, 21 | eqeltrd 2234 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 − 2) ∈ ℕ0) |
23 | 2nn0 9102 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
24 | 23 | jctl 312 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (2 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) |
25 | 24 | 3ad2ant1 1003 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (2 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) |
26 | nn0sub 9228 | . . 3 ⊢ ((2 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (2 ≤ 𝑁 ↔ (𝑁 − 2) ∈ ℕ0)) | |
27 | 25, 26 | syl 14 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (2 ≤ 𝑁 ↔ (𝑁 − 2) ∈ ℕ0)) |
28 | 22, 27 | mpbird 166 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 963 = wceq 1335 ∈ wcel 2128 ≠ wne 2327 class class class wbr 3965 (class class class)co 5821 0cc0 7727 1c1 7728 + caddc 7730 ≤ cle 7908 − cmin 8041 ℕcn 8828 2c2 8879 ℕ0cn0 9085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-cnex 7818 ax-resscn 7819 ax-1cn 7820 ax-1re 7821 ax-icn 7822 ax-addcl 7823 ax-addrcl 7824 ax-mulcl 7825 ax-addcom 7827 ax-addass 7829 ax-distr 7831 ax-i2m1 7832 ax-0lt1 7833 ax-0id 7835 ax-rnegex 7836 ax-cnre 7838 ax-pre-ltirr 7839 ax-pre-ltwlin 7840 ax-pre-lttrn 7841 ax-pre-ltadd 7843 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-iota 5134 df-fun 5171 df-fv 5177 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-pnf 7909 df-mnf 7910 df-xr 7911 df-ltxr 7912 df-le 7913 df-sub 8043 df-neg 8044 df-inn 8829 df-2 8887 df-n0 9086 df-z 9163 |
This theorem is referenced by: nn0n0n1ge2b 9238 |
Copyright terms: Public domain | W3C validator |