ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4dvdseven GIF version

Theorem 4dvdseven 11409
Description: An integer which is divisible by 4 is an even integer. (Contributed by AV, 4-Jul-2021.)
Assertion
Ref Expression
4dvdseven (4 ∥ 𝑁 → 2 ∥ 𝑁)

Proof of Theorem 4dvdseven
StepHypRef Expression
1 2z 8934 . . . 4 2 ∈ ℤ
21a1i 9 . . 3 (4 ∥ 𝑁 → 2 ∈ ℤ)
3 4z 8936 . . . 4 4 ∈ ℤ
43a1i 9 . . 3 (4 ∥ 𝑁 → 4 ∈ ℤ)
5 dvdszrcl 11293 . . . 4 (4 ∥ 𝑁 → (4 ∈ ℤ ∧ 𝑁 ∈ ℤ))
65simprd 113 . . 3 (4 ∥ 𝑁𝑁 ∈ ℤ)
72, 4, 63jca 1129 . 2 (4 ∥ 𝑁 → (2 ∈ ℤ ∧ 4 ∈ ℤ ∧ 𝑁 ∈ ℤ))
8 z4even 11408 . . 3 2 ∥ 4
98jctl 310 . 2 (4 ∥ 𝑁 → (2 ∥ 4 ∧ 4 ∥ 𝑁))
10 dvdstr 11325 . 2 ((2 ∈ ℤ ∧ 4 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((2 ∥ 4 ∧ 4 ∥ 𝑁) → 2 ∥ 𝑁))
117, 9, 10sylc 62 1 (4 ∥ 𝑁 → 2 ∥ 𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 930  wcel 1448   class class class wbr 3875  2c2 8629  4c4 8631  cz 8906  cdvds 11288
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-ltadd 7611
This theorem depends on definitions:  df-bi 116  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-br 3876  df-opab 3930  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-iota 5024  df-fun 5061  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-inn 8579  df-2 8637  df-3 8638  df-4 8639  df-n0 8830  df-z 8907  df-dvds 11289
This theorem is referenced by:  flodddiv4lt  11428
  Copyright terms: Public domain W3C validator