![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > expge1 | GIF version |
Description: Nonnegative integer exponentiation with a mantissa greater than or equal to 1 is greater than or equal to 1. (Contributed by NM, 21-Feb-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
Ref | Expression |
---|---|
expge1 | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝐴) → 1 ≤ (𝐴↑𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 3897 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (1 ≤ 𝑧 ↔ 1 ≤ 𝐴)) | |
2 | 1 | elrab 2807 | . . . . 5 ⊢ (𝐴 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ (𝐴 ∈ ℝ ∧ 1 ≤ 𝐴)) |
3 | ssrab2 3146 | . . . . . . 7 ⊢ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ⊆ ℝ | |
4 | ax-resscn 7631 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
5 | 3, 4 | sstri 3070 | . . . . . 6 ⊢ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ⊆ ℂ |
6 | breq2 3897 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (1 ≤ 𝑧 ↔ 1 ≤ 𝑥)) | |
7 | 6 | elrab 2807 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) |
8 | breq2 3897 | . . . . . . . 8 ⊢ (𝑧 = 𝑦 → (1 ≤ 𝑧 ↔ 1 ≤ 𝑦)) | |
9 | 8 | elrab 2807 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) |
10 | remulcl 7666 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ) | |
11 | 10 | ad2ant2r 498 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (𝑥 · 𝑦) ∈ ℝ) |
12 | 1t1e1 8770 | . . . . . . . . . 10 ⊢ (1 · 1) = 1 | |
13 | 1re 7683 | . . . . . . . . . . . . . 14 ⊢ 1 ∈ ℝ | |
14 | 0le1 8156 | . . . . . . . . . . . . . 14 ⊢ 0 ≤ 1 | |
15 | 13, 14 | pm3.2i 268 | . . . . . . . . . . . . 13 ⊢ (1 ∈ ℝ ∧ 0 ≤ 1) |
16 | 15 | jctl 310 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ ℝ → ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ 𝑥 ∈ ℝ)) |
17 | 15 | jctl 310 | . . . . . . . . . . . 12 ⊢ (𝑦 ∈ ℝ → ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ 𝑦 ∈ ℝ)) |
18 | lemul12a 8524 | . . . . . . . . . . . 12 ⊢ ((((1 ∈ ℝ ∧ 0 ≤ 1) ∧ 𝑥 ∈ ℝ) ∧ ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ 𝑦 ∈ ℝ)) → ((1 ≤ 𝑥 ∧ 1 ≤ 𝑦) → (1 · 1) ≤ (𝑥 · 𝑦))) | |
19 | 16, 17, 18 | syl2an 285 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 ≤ 𝑥 ∧ 1 ≤ 𝑦) → (1 · 1) ≤ (𝑥 · 𝑦))) |
20 | 19 | imp 123 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (1 ≤ 𝑥 ∧ 1 ≤ 𝑦)) → (1 · 1) ≤ (𝑥 · 𝑦)) |
21 | 12, 20 | eqbrtrrid 3927 | . . . . . . . . 9 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (1 ≤ 𝑥 ∧ 1 ≤ 𝑦)) → 1 ≤ (𝑥 · 𝑦)) |
22 | 21 | an4s 560 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 1 ≤ (𝑥 · 𝑦)) |
23 | breq2 3897 | . . . . . . . . 9 ⊢ (𝑧 = (𝑥 · 𝑦) → (1 ≤ 𝑧 ↔ 1 ≤ (𝑥 · 𝑦))) | |
24 | 23 | elrab 2807 | . . . . . . . 8 ⊢ ((𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ ((𝑥 · 𝑦) ∈ ℝ ∧ 1 ≤ (𝑥 · 𝑦))) |
25 | 11, 22, 24 | sylanbrc 411 | . . . . . . 7 ⊢ (((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧}) |
26 | 7, 9, 25 | syl2anb 287 | . . . . . 6 ⊢ ((𝑥 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧}) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧}) |
27 | 1le1 8246 | . . . . . . 7 ⊢ 1 ≤ 1 | |
28 | breq2 3897 | . . . . . . . 8 ⊢ (𝑧 = 1 → (1 ≤ 𝑧 ↔ 1 ≤ 1)) | |
29 | 28 | elrab 2807 | . . . . . . 7 ⊢ (1 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ (1 ∈ ℝ ∧ 1 ≤ 1)) |
30 | 13, 27, 29 | mpbir2an 907 | . . . . . 6 ⊢ 1 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} |
31 | 5, 26, 30 | expcllem 10191 | . . . . 5 ⊢ ((𝐴 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧}) |
32 | 2, 31 | sylanbr 281 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧}) |
33 | 32 | 3impa 1157 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧}) |
34 | 33 | 3com23 1168 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝐴) → (𝐴↑𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧}) |
35 | breq2 3897 | . . . 4 ⊢ (𝑧 = (𝐴↑𝑁) → (1 ≤ 𝑧 ↔ 1 ≤ (𝐴↑𝑁))) | |
36 | 35 | elrab 2807 | . . 3 ⊢ ((𝐴↑𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ ((𝐴↑𝑁) ∈ ℝ ∧ 1 ≤ (𝐴↑𝑁))) |
37 | 36 | simprbi 271 | . 2 ⊢ ((𝐴↑𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} → 1 ≤ (𝐴↑𝑁)) |
38 | 34, 37 | syl 14 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝐴) → 1 ≤ (𝐴↑𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 943 ∈ wcel 1461 {crab 2392 class class class wbr 3893 (class class class)co 5726 ℂcc 7539 ℝcr 7540 0cc0 7541 1c1 7542 · cmul 7546 ≤ cle 7719 ℕ0cn0 8875 ↑cexp 10179 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-coll 4001 ax-sep 4004 ax-nul 4012 ax-pow 4056 ax-pr 4089 ax-un 4313 ax-setind 4410 ax-iinf 4460 ax-cnex 7630 ax-resscn 7631 ax-1cn 7632 ax-1re 7633 ax-icn 7634 ax-addcl 7635 ax-addrcl 7636 ax-mulcl 7637 ax-mulrcl 7638 ax-addcom 7639 ax-mulcom 7640 ax-addass 7641 ax-mulass 7642 ax-distr 7643 ax-i2m1 7644 ax-0lt1 7645 ax-1rid 7646 ax-0id 7647 ax-rnegex 7648 ax-precex 7649 ax-cnre 7650 ax-pre-ltirr 7651 ax-pre-ltwlin 7652 ax-pre-lttrn 7653 ax-pre-apti 7654 ax-pre-ltadd 7655 ax-pre-mulgt0 7656 ax-pre-mulext 7657 |
This theorem depends on definitions: df-bi 116 df-dc 803 df-3or 944 df-3an 945 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-nel 2376 df-ral 2393 df-rex 2394 df-reu 2395 df-rmo 2396 df-rab 2397 df-v 2657 df-sbc 2877 df-csb 2970 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-nul 3328 df-if 3439 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-int 3736 df-iun 3779 df-br 3894 df-opab 3948 df-mpt 3949 df-tr 3985 df-id 4173 df-po 4176 df-iso 4177 df-iord 4246 df-on 4248 df-ilim 4249 df-suc 4251 df-iom 4463 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-res 4509 df-ima 4510 df-iota 5044 df-fun 5081 df-fn 5082 df-f 5083 df-f1 5084 df-fo 5085 df-f1o 5086 df-fv 5087 df-riota 5682 df-ov 5729 df-oprab 5730 df-mpo 5731 df-1st 5990 df-2nd 5991 df-recs 6154 df-frec 6240 df-pnf 7720 df-mnf 7721 df-xr 7722 df-ltxr 7723 df-le 7724 df-sub 7852 df-neg 7853 df-reap 8249 df-ap 8256 df-div 8340 df-inn 8625 df-n0 8876 df-z 8953 df-uz 9223 df-seqfrec 10106 df-exp 10180 |
This theorem is referenced by: expgt1 10218 leexp2a 10233 expge1d 10330 |
Copyright terms: Public domain | W3C validator |