| Step | Hyp | Ref
| Expression |
| 1 | | breq2 4037 |
. . . . . 6
⊢ (𝑧 = 𝐴 → (1 ≤ 𝑧 ↔ 1 ≤ 𝐴)) |
| 2 | 1 | elrab 2920 |
. . . . 5
⊢ (𝐴 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ (𝐴 ∈ ℝ ∧ 1 ≤ 𝐴)) |
| 3 | | ssrab2 3268 |
. . . . . . 7
⊢ {𝑧 ∈ ℝ ∣ 1 ≤
𝑧} ⊆
ℝ |
| 4 | | ax-resscn 7971 |
. . . . . . 7
⊢ ℝ
⊆ ℂ |
| 5 | 3, 4 | sstri 3192 |
. . . . . 6
⊢ {𝑧 ∈ ℝ ∣ 1 ≤
𝑧} ⊆
ℂ |
| 6 | | breq2 4037 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → (1 ≤ 𝑧 ↔ 1 ≤ 𝑥)) |
| 7 | 6 | elrab 2920 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) |
| 8 | | breq2 4037 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → (1 ≤ 𝑧 ↔ 1 ≤ 𝑦)) |
| 9 | 8 | elrab 2920 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) |
| 10 | | remulcl 8007 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ) |
| 11 | 10 | ad2ant2r 509 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℝ ∧ 1 ≤
𝑥) ∧ (𝑦 ∈ ℝ ∧ 1 ≤
𝑦)) → (𝑥 · 𝑦) ∈ ℝ) |
| 12 | | 1t1e1 9143 |
. . . . . . . . . 10
⊢ (1
· 1) = 1 |
| 13 | | 1re 8025 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℝ |
| 14 | | 0le1 8508 |
. . . . . . . . . . . . . 14
⊢ 0 ≤
1 |
| 15 | 13, 14 | pm3.2i 272 |
. . . . . . . . . . . . 13
⊢ (1 ∈
ℝ ∧ 0 ≤ 1) |
| 16 | 15 | jctl 314 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ → ((1
∈ ℝ ∧ 0 ≤ 1) ∧ 𝑥 ∈ ℝ)) |
| 17 | 15 | jctl 314 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℝ → ((1
∈ ℝ ∧ 0 ≤ 1) ∧ 𝑦 ∈ ℝ)) |
| 18 | | lemul12a 8889 |
. . . . . . . . . . . 12
⊢ ((((1
∈ ℝ ∧ 0 ≤ 1) ∧ 𝑥 ∈ ℝ) ∧ ((1 ∈ ℝ
∧ 0 ≤ 1) ∧ 𝑦
∈ ℝ)) → ((1 ≤ 𝑥 ∧ 1 ≤ 𝑦) → (1 · 1) ≤ (𝑥 · 𝑦))) |
| 19 | 16, 17, 18 | syl2an 289 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 ≤
𝑥 ∧ 1 ≤ 𝑦) → (1 · 1) ≤
(𝑥 · 𝑦))) |
| 20 | 19 | imp 124 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (1 ≤
𝑥 ∧ 1 ≤ 𝑦)) → (1 · 1) ≤
(𝑥 · 𝑦)) |
| 21 | 12, 20 | eqbrtrrid 4069 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (1 ≤
𝑥 ∧ 1 ≤ 𝑦)) → 1 ≤ (𝑥 · 𝑦)) |
| 22 | 21 | an4s 588 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℝ ∧ 1 ≤
𝑥) ∧ (𝑦 ∈ ℝ ∧ 1 ≤
𝑦)) → 1 ≤ (𝑥 · 𝑦)) |
| 23 | | breq2 4037 |
. . . . . . . . 9
⊢ (𝑧 = (𝑥 · 𝑦) → (1 ≤ 𝑧 ↔ 1 ≤ (𝑥 · 𝑦))) |
| 24 | 23 | elrab 2920 |
. . . . . . . 8
⊢ ((𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ ((𝑥 · 𝑦) ∈ ℝ ∧ 1 ≤ (𝑥 · 𝑦))) |
| 25 | 11, 22, 24 | sylanbrc 417 |
. . . . . . 7
⊢ (((𝑥 ∈ ℝ ∧ 1 ≤
𝑥) ∧ (𝑦 ∈ ℝ ∧ 1 ≤
𝑦)) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧}) |
| 26 | 7, 9, 25 | syl2anb 291 |
. . . . . 6
⊢ ((𝑥 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧}) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧}) |
| 27 | | 1le1 8599 |
. . . . . . 7
⊢ 1 ≤
1 |
| 28 | | breq2 4037 |
. . . . . . . 8
⊢ (𝑧 = 1 → (1 ≤ 𝑧 ↔ 1 ≤
1)) |
| 29 | 28 | elrab 2920 |
. . . . . . 7
⊢ (1 ∈
{𝑧 ∈ ℝ ∣ 1
≤ 𝑧} ↔ (1 ∈
ℝ ∧ 1 ≤ 1)) |
| 30 | 13, 27, 29 | mpbir2an 944 |
. . . . . 6
⊢ 1 ∈
{𝑧 ∈ ℝ ∣ 1
≤ 𝑧} |
| 31 | 5, 26, 30 | expcllem 10642 |
. . . . 5
⊢ ((𝐴 ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧}) |
| 32 | 2, 31 | sylanbr 285 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤
𝐴) ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧}) |
| 33 | 32 | 3impa 1196 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤
𝐴 ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧}) |
| 34 | 33 | 3com23 1211 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0
∧ 1 ≤ 𝐴) →
(𝐴↑𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧}) |
| 35 | | breq2 4037 |
. . . 4
⊢ (𝑧 = (𝐴↑𝑁) → (1 ≤ 𝑧 ↔ 1 ≤ (𝐴↑𝑁))) |
| 36 | 35 | elrab 2920 |
. . 3
⊢ ((𝐴↑𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} ↔ ((𝐴↑𝑁) ∈ ℝ ∧ 1 ≤ (𝐴↑𝑁))) |
| 37 | 36 | simprbi 275 |
. 2
⊢ ((𝐴↑𝑁) ∈ {𝑧 ∈ ℝ ∣ 1 ≤ 𝑧} → 1 ≤ (𝐴↑𝑁)) |
| 38 | 34, 37 | syl 14 |
1
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0
∧ 1 ≤ 𝐴) → 1
≤ (𝐴↑𝑁)) |