| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mpanl12 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) | 
| Ref | Expression | 
|---|---|
| mpanl12.1 | ⊢ 𝜑 | 
| mpanl12.2 | ⊢ 𝜓 | 
| mpanl12.3 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | 
| Ref | Expression | 
|---|---|
| mpanl12 | ⊢ (𝜒 → 𝜃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mpanl12.2 | . 2 ⊢ 𝜓 | |
| 2 | mpanl12.1 | . . 3 ⊢ 𝜑 | |
| 3 | mpanl12.3 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mpanl1 434 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | 
| 5 | 1, 4 | mpan 424 | 1 ⊢ (𝜒 → 𝜃) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem is referenced by: reuun1 3445 ordtri2orexmid 4559 opthreg 4592 ordtri2or2exmid 4607 ontri2orexmidim 4608 fvtp1 5773 nq0m0r 7523 nq02m 7532 gt0srpr 7815 map2psrprg 7872 pitoregt0 7916 axcnre 7948 addgt0 8475 addgegt0 8476 addgtge0 8477 addge0 8478 addgt0i 8515 addge0i 8516 addgegt0i 8517 add20i 8519 mulge0i 8647 recextlem1 8678 recap0 8712 recdivap 8745 recgt1 8924 prodgt0i 8935 prodge0i 8936 iccshftri 10070 iccshftli 10072 iccdili 10074 icccntri 10076 mulexpzap 10671 expaddzap 10675 m1expeven 10678 iexpcyc 10736 amgm2 11283 ege2le3 11836 sqnprm 12304 lmres 14484 2logb9irrap 15213 | 
| Copyright terms: Public domain | W3C validator |