![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpanl12 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
Ref | Expression |
---|---|
mpanl12.1 | ⊢ 𝜑 |
mpanl12.2 | ⊢ 𝜓 |
mpanl12.3 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpanl12 | ⊢ (𝜒 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanl12.2 | . 2 ⊢ 𝜓 | |
2 | mpanl12.1 | . . 3 ⊢ 𝜑 | |
3 | mpanl12.3 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | mpanl1 434 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
5 | 1, 4 | mpan 424 | 1 ⊢ (𝜒 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem is referenced by: reuun1 3418 ordtri2orexmid 4523 opthreg 4556 ordtri2or2exmid 4571 ontri2orexmidim 4572 fvtp1 5728 nq0m0r 7455 nq02m 7464 gt0srpr 7747 map2psrprg 7804 pitoregt0 7848 axcnre 7880 addgt0 8405 addgegt0 8406 addgtge0 8407 addge0 8408 addgt0i 8445 addge0i 8446 addgegt0i 8447 add20i 8449 mulge0i 8577 recextlem1 8608 recap0 8642 recdivap 8675 recgt1 8854 prodgt0i 8865 prodge0i 8866 iccshftri 9995 iccshftli 9997 iccdili 9999 icccntri 10001 mulexpzap 10560 expaddzap 10564 m1expeven 10567 iexpcyc 10625 amgm2 11127 ege2le3 11679 sqnprm 12136 lmres 13751 2logb9irrap 14398 |
Copyright terms: Public domain | W3C validator |