| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpanl12 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
| Ref | Expression |
|---|---|
| mpanl12.1 | ⊢ 𝜑 |
| mpanl12.2 | ⊢ 𝜓 |
| mpanl12.3 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanl12 | ⊢ (𝜒 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanl12.2 | . 2 ⊢ 𝜓 | |
| 2 | mpanl12.1 | . . 3 ⊢ 𝜑 | |
| 3 | mpanl12.3 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mpanl1 434 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | mpan 424 | 1 ⊢ (𝜒 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: reuun1 3466 ordtri2orexmid 4592 opthreg 4625 ordtri2or2exmid 4640 ontri2orexmidim 4641 fvtp1 5823 nq0m0r 7611 nq02m 7620 gt0srpr 7903 map2psrprg 7960 pitoregt0 8004 axcnre 8036 addgt0 8563 addgegt0 8564 addgtge0 8565 addge0 8566 addgt0i 8603 addge0i 8604 addgegt0i 8605 add20i 8607 mulge0i 8735 recextlem1 8766 recap0 8800 recdivap 8833 recgt1 9012 prodgt0i 9023 prodge0i 9024 iccshftri 10159 iccshftli 10161 iccdili 10163 icccntri 10165 mulexpzap 10768 expaddzap 10772 m1expeven 10775 iexpcyc 10833 amgm2 11595 ege2le3 12148 sqnprm 12624 lmres 14887 2logb9irrap 15616 |
| Copyright terms: Public domain | W3C validator |