Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpanl12 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
Ref | Expression |
---|---|
mpanl12.1 | ⊢ 𝜑 |
mpanl12.2 | ⊢ 𝜓 |
mpanl12.3 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpanl12 | ⊢ (𝜒 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanl12.2 | . 2 ⊢ 𝜓 | |
2 | mpanl12.1 | . . 3 ⊢ 𝜑 | |
3 | mpanl12.3 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | mpanl1 431 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
5 | 1, 4 | mpan 421 | 1 ⊢ (𝜒 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: reuun1 3404 ordtri2orexmid 4500 opthreg 4533 ordtri2or2exmid 4548 ontri2orexmidim 4549 fvtp1 5696 nq0m0r 7397 nq02m 7406 gt0srpr 7689 map2psrprg 7746 pitoregt0 7790 axcnre 7822 addgt0 8346 addgegt0 8347 addgtge0 8348 addge0 8349 addgt0i 8386 addge0i 8387 addgegt0i 8388 add20i 8390 mulge0i 8518 recextlem1 8548 recap0 8581 recdivap 8614 recgt1 8792 prodgt0i 8803 prodge0i 8804 iccshftri 9931 iccshftli 9933 iccdili 9935 icccntri 9937 mulexpzap 10495 expaddzap 10499 m1expeven 10502 iexpcyc 10559 amgm2 11060 ege2le3 11612 sqnprm 12068 lmres 12888 2logb9irrap 13535 |
Copyright terms: Public domain | W3C validator |