| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpanl12 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
| Ref | Expression |
|---|---|
| mpanl12.1 | ⊢ 𝜑 |
| mpanl12.2 | ⊢ 𝜓 |
| mpanl12.3 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanl12 | ⊢ (𝜒 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanl12.2 | . 2 ⊢ 𝜓 | |
| 2 | mpanl12.1 | . . 3 ⊢ 𝜑 | |
| 3 | mpanl12.3 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mpanl1 434 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | mpan 424 | 1 ⊢ (𝜒 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: reuun1 3486 ordtri2orexmid 4615 opthreg 4648 ordtri2or2exmid 4663 ontri2orexmidim 4664 fvtp1 5854 nq0m0r 7651 nq02m 7660 gt0srpr 7943 map2psrprg 8000 pitoregt0 8044 axcnre 8076 addgt0 8603 addgegt0 8604 addgtge0 8605 addge0 8606 addgt0i 8643 addge0i 8644 addgegt0i 8645 add20i 8647 mulge0i 8775 recextlem1 8806 recap0 8840 recdivap 8873 recgt1 9052 prodgt0i 9063 prodge0i 9064 iccshftri 10199 iccshftli 10201 iccdili 10203 icccntri 10205 mulexpzap 10809 expaddzap 10813 m1expeven 10816 iexpcyc 10874 amgm2 11637 ege2le3 12190 sqnprm 12666 lmres 14930 2logb9irrap 15659 |
| Copyright terms: Public domain | W3C validator |