| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpanl12 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
| Ref | Expression |
|---|---|
| mpanl12.1 | ⊢ 𝜑 |
| mpanl12.2 | ⊢ 𝜓 |
| mpanl12.3 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanl12 | ⊢ (𝜒 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanl12.2 | . 2 ⊢ 𝜓 | |
| 2 | mpanl12.1 | . . 3 ⊢ 𝜑 | |
| 3 | mpanl12.3 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mpanl1 434 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | mpan 424 | 1 ⊢ (𝜒 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: reuun1 3446 ordtri2orexmid 4560 opthreg 4593 ordtri2or2exmid 4608 ontri2orexmidim 4609 fvtp1 5776 nq0m0r 7542 nq02m 7551 gt0srpr 7834 map2psrprg 7891 pitoregt0 7935 axcnre 7967 addgt0 8494 addgegt0 8495 addgtge0 8496 addge0 8497 addgt0i 8534 addge0i 8535 addgegt0i 8536 add20i 8538 mulge0i 8666 recextlem1 8697 recap0 8731 recdivap 8764 recgt1 8943 prodgt0i 8954 prodge0i 8955 iccshftri 10089 iccshftli 10091 iccdili 10093 icccntri 10095 mulexpzap 10690 expaddzap 10694 m1expeven 10697 iexpcyc 10755 amgm2 11302 ege2le3 11855 sqnprm 12331 lmres 14592 2logb9irrap 15321 |
| Copyright terms: Public domain | W3C validator |