| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpanl12 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
| Ref | Expression |
|---|---|
| mpanl12.1 | ⊢ 𝜑 |
| mpanl12.2 | ⊢ 𝜓 |
| mpanl12.3 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanl12 | ⊢ (𝜒 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanl12.2 | . 2 ⊢ 𝜓 | |
| 2 | mpanl12.1 | . . 3 ⊢ 𝜑 | |
| 3 | mpanl12.3 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mpanl1 434 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | mpan 424 | 1 ⊢ (𝜒 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: reuun1 3456 ordtri2orexmid 4575 opthreg 4608 ordtri2or2exmid 4623 ontri2orexmidim 4624 fvtp1 5802 nq0m0r 7576 nq02m 7585 gt0srpr 7868 map2psrprg 7925 pitoregt0 7969 axcnre 8001 addgt0 8528 addgegt0 8529 addgtge0 8530 addge0 8531 addgt0i 8568 addge0i 8569 addgegt0i 8570 add20i 8572 mulge0i 8700 recextlem1 8731 recap0 8765 recdivap 8798 recgt1 8977 prodgt0i 8988 prodge0i 8989 iccshftri 10124 iccshftli 10126 iccdili 10128 icccntri 10130 mulexpzap 10731 expaddzap 10735 m1expeven 10738 iexpcyc 10796 amgm2 11473 ege2le3 12026 sqnprm 12502 lmres 14764 2logb9irrap 15493 |
| Copyright terms: Public domain | W3C validator |