![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpanl12 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
Ref | Expression |
---|---|
mpanl12.1 | ⊢ 𝜑 |
mpanl12.2 | ⊢ 𝜓 |
mpanl12.3 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpanl12 | ⊢ (𝜒 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanl12.2 | . 2 ⊢ 𝜓 | |
2 | mpanl12.1 | . . 3 ⊢ 𝜑 | |
3 | mpanl12.3 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | mpanl1 434 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
5 | 1, 4 | mpan 424 | 1 ⊢ (𝜒 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem is referenced by: reuun1 3417 ordtri2orexmid 4522 opthreg 4555 ordtri2or2exmid 4570 ontri2orexmidim 4571 fvtp1 5727 nq0m0r 7454 nq02m 7463 gt0srpr 7746 map2psrprg 7803 pitoregt0 7847 axcnre 7879 addgt0 8404 addgegt0 8405 addgtge0 8406 addge0 8407 addgt0i 8444 addge0i 8445 addgegt0i 8446 add20i 8448 mulge0i 8576 recextlem1 8607 recap0 8641 recdivap 8674 recgt1 8853 prodgt0i 8864 prodge0i 8865 iccshftri 9994 iccshftli 9996 iccdili 9998 icccntri 10000 mulexpzap 10559 expaddzap 10563 m1expeven 10566 iexpcyc 10624 amgm2 11126 ege2le3 11678 sqnprm 12135 lmres 13718 2logb9irrap 14365 |
Copyright terms: Public domain | W3C validator |