ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnn0ind GIF version

Theorem fnn0ind 9307
Description: Induction on the integers from 0 to 𝑁 inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
fnn0ind.1 (𝑥 = 0 → (𝜑𝜓))
fnn0ind.2 (𝑥 = 𝑦 → (𝜑𝜒))
fnn0ind.3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
fnn0ind.4 (𝑥 = 𝐾 → (𝜑𝜏))
fnn0ind.5 (𝑁 ∈ ℕ0𝜓)
fnn0ind.6 ((𝑁 ∈ ℕ0𝑦 ∈ ℕ0𝑦 < 𝑁) → (𝜒𝜃))
Assertion
Ref Expression
fnn0ind ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0𝐾𝑁) → 𝜏)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑁,𝑦   𝜒,𝑥   𝜑,𝑦   𝜓,𝑥   𝜏,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐾(𝑦)

Proof of Theorem fnn0ind
StepHypRef Expression
1 elnn0z 9204 . . . 4 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾))
2 nn0z 9211 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
3 0z 9202 . . . . . . . 8 0 ∈ ℤ
4 fnn0ind.1 . . . . . . . . 9 (𝑥 = 0 → (𝜑𝜓))
5 fnn0ind.2 . . . . . . . . 9 (𝑥 = 𝑦 → (𝜑𝜒))
6 fnn0ind.3 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
7 fnn0ind.4 . . . . . . . . 9 (𝑥 = 𝐾 → (𝜑𝜏))
8 elnn0z 9204 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
9 fnn0ind.5 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝜓)
108, 9sylbir 134 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 𝜓)
11103adant1 1005 . . . . . . . . 9 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 𝜓)
12 zre 9195 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℤ → 𝑦 ∈ ℝ)
13 zre 9195 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
14 0re 7899 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
15 lelttr 7987 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝑦𝑦 < 𝑁) → 0 < 𝑁))
16 ltle 7986 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑁 → 0 ≤ 𝑁))
17163adant2 1006 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑁 → 0 ≤ 𝑁))
1815, 17syld 45 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝑦𝑦 < 𝑁) → 0 ≤ 𝑁))
1914, 18mp3an1 1314 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝑦𝑦 < 𝑁) → 0 ≤ 𝑁))
2012, 13, 19syl2an 287 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 ≤ 𝑦𝑦 < 𝑁) → 0 ≤ 𝑁))
2120ex 114 . . . . . . . . . . . . . 14 (𝑦 ∈ ℤ → (𝑁 ∈ ℤ → ((0 ≤ 𝑦𝑦 < 𝑁) → 0 ≤ 𝑁)))
2221com23 78 . . . . . . . . . . . . 13 (𝑦 ∈ ℤ → ((0 ≤ 𝑦𝑦 < 𝑁) → (𝑁 ∈ ℤ → 0 ≤ 𝑁)))
23223impib 1191 . . . . . . . . . . . 12 ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < 𝑁) → (𝑁 ∈ ℤ → 0 ≤ 𝑁))
2423impcom 124 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < 𝑁)) → 0 ≤ 𝑁)
25 elnn0z 9204 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ0 ↔ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦))
2625anbi1i 454 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ0𝑦 < 𝑁) ↔ ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) ∧ 𝑦 < 𝑁))
27 fnn0ind.6 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0𝑦 ∈ ℕ0𝑦 < 𝑁) → (𝜒𝜃))
28273expb 1194 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑦 < 𝑁)) → (𝜒𝜃))
298, 26, 28syl2anbr 290 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) ∧ ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) ∧ 𝑦 < 𝑁)) → (𝜒𝜃))
3029expcom 115 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) ∧ 𝑦 < 𝑁) → ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝜒𝜃)))
31303impa 1184 . . . . . . . . . . . . 13 ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < 𝑁) → ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝜒𝜃)))
3231expd 256 . . . . . . . . . . . 12 ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < 𝑁) → (𝑁 ∈ ℤ → (0 ≤ 𝑁 → (𝜒𝜃))))
3332impcom 124 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < 𝑁)) → (0 ≤ 𝑁 → (𝜒𝜃)))
3424, 33mpd 13 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < 𝑁)) → (𝜒𝜃))
3534adantll 468 . . . . . . . . 9 (((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < 𝑁)) → (𝜒𝜃))
364, 5, 6, 7, 11, 35fzind 9306 . . . . . . . 8 (((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾𝐾𝑁)) → 𝜏)
373, 36mpanl1 431 . . . . . . 7 ((𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾𝐾𝑁)) → 𝜏)
3837expcom 115 . . . . . 6 ((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾𝐾𝑁) → (𝑁 ∈ ℤ → 𝜏))
392, 38syl5 32 . . . . 5 ((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾𝐾𝑁) → (𝑁 ∈ ℕ0𝜏))
40393expa 1193 . . . 4 (((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) ∧ 𝐾𝑁) → (𝑁 ∈ ℕ0𝜏))
411, 40sylanb 282 . . 3 ((𝐾 ∈ ℕ0𝐾𝑁) → (𝑁 ∈ ℕ0𝜏))
4241impcom 124 . 2 ((𝑁 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐾𝑁)) → 𝜏)
43423impb 1189 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0𝐾𝑁) → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136   class class class wbr 3982  (class class class)co 5842  cr 7752  0cc0 7753  1c1 7754   + caddc 7756   < clt 7933  cle 7934  0cn0 9114  cz 9191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192
This theorem is referenced by:  nn0seqcvgd  11973
  Copyright terms: Public domain W3C validator