ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnn0ind GIF version

Theorem fnn0ind 9191
Description: Induction on the integers from 0 to 𝑁 inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
fnn0ind.1 (𝑥 = 0 → (𝜑𝜓))
fnn0ind.2 (𝑥 = 𝑦 → (𝜑𝜒))
fnn0ind.3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
fnn0ind.4 (𝑥 = 𝐾 → (𝜑𝜏))
fnn0ind.5 (𝑁 ∈ ℕ0𝜓)
fnn0ind.6 ((𝑁 ∈ ℕ0𝑦 ∈ ℕ0𝑦 < 𝑁) → (𝜒𝜃))
Assertion
Ref Expression
fnn0ind ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0𝐾𝑁) → 𝜏)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑁,𝑦   𝜒,𝑥   𝜑,𝑦   𝜓,𝑥   𝜏,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐾(𝑦)

Proof of Theorem fnn0ind
StepHypRef Expression
1 elnn0z 9091 . . . 4 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾))
2 nn0z 9098 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
3 0z 9089 . . . . . . . 8 0 ∈ ℤ
4 fnn0ind.1 . . . . . . . . 9 (𝑥 = 0 → (𝜑𝜓))
5 fnn0ind.2 . . . . . . . . 9 (𝑥 = 𝑦 → (𝜑𝜒))
6 fnn0ind.3 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
7 fnn0ind.4 . . . . . . . . 9 (𝑥 = 𝐾 → (𝜑𝜏))
8 elnn0z 9091 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
9 fnn0ind.5 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝜓)
108, 9sylbir 134 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 𝜓)
11103adant1 1000 . . . . . . . . 9 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 𝜓)
12 zre 9082 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℤ → 𝑦 ∈ ℝ)
13 zre 9082 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
14 0re 7790 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
15 lelttr 7876 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝑦𝑦 < 𝑁) → 0 < 𝑁))
16 ltle 7875 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑁 → 0 ≤ 𝑁))
17163adant2 1001 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑁 → 0 ≤ 𝑁))
1815, 17syld 45 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝑦𝑦 < 𝑁) → 0 ≤ 𝑁))
1914, 18mp3an1 1303 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝑦𝑦 < 𝑁) → 0 ≤ 𝑁))
2012, 13, 19syl2an 287 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 ≤ 𝑦𝑦 < 𝑁) → 0 ≤ 𝑁))
2120ex 114 . . . . . . . . . . . . . 14 (𝑦 ∈ ℤ → (𝑁 ∈ ℤ → ((0 ≤ 𝑦𝑦 < 𝑁) → 0 ≤ 𝑁)))
2221com23 78 . . . . . . . . . . . . 13 (𝑦 ∈ ℤ → ((0 ≤ 𝑦𝑦 < 𝑁) → (𝑁 ∈ ℤ → 0 ≤ 𝑁)))
23223impib 1180 . . . . . . . . . . . 12 ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < 𝑁) → (𝑁 ∈ ℤ → 0 ≤ 𝑁))
2423impcom 124 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < 𝑁)) → 0 ≤ 𝑁)
25 elnn0z 9091 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ0 ↔ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦))
2625anbi1i 454 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ0𝑦 < 𝑁) ↔ ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) ∧ 𝑦 < 𝑁))
27 fnn0ind.6 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0𝑦 ∈ ℕ0𝑦 < 𝑁) → (𝜒𝜃))
28273expb 1183 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑦 < 𝑁)) → (𝜒𝜃))
298, 26, 28syl2anbr 290 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) ∧ ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) ∧ 𝑦 < 𝑁)) → (𝜒𝜃))
3029expcom 115 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) ∧ 𝑦 < 𝑁) → ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝜒𝜃)))
31303impa 1177 . . . . . . . . . . . . 13 ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < 𝑁) → ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝜒𝜃)))
3231expd 256 . . . . . . . . . . . 12 ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < 𝑁) → (𝑁 ∈ ℤ → (0 ≤ 𝑁 → (𝜒𝜃))))
3332impcom 124 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < 𝑁)) → (0 ≤ 𝑁 → (𝜒𝜃)))
3424, 33mpd 13 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < 𝑁)) → (𝜒𝜃))
3534adantll 468 . . . . . . . . 9 (((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < 𝑁)) → (𝜒𝜃))
364, 5, 6, 7, 11, 35fzind 9190 . . . . . . . 8 (((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾𝐾𝑁)) → 𝜏)
373, 36mpanl1 431 . . . . . . 7 ((𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾𝐾𝑁)) → 𝜏)
3837expcom 115 . . . . . 6 ((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾𝐾𝑁) → (𝑁 ∈ ℤ → 𝜏))
392, 38syl5 32 . . . . 5 ((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾𝐾𝑁) → (𝑁 ∈ ℕ0𝜏))
40393expa 1182 . . . 4 (((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) ∧ 𝐾𝑁) → (𝑁 ∈ ℕ0𝜏))
411, 40sylanb 282 . . 3 ((𝐾 ∈ ℕ0𝐾𝑁) → (𝑁 ∈ ℕ0𝜏))
4241impcom 124 . 2 ((𝑁 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐾𝑁)) → 𝜏)
43423impb 1178 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0𝐾𝑁) → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wcel 1481   class class class wbr 3937  (class class class)co 5782  cr 7643  0cc0 7644  1c1 7645   + caddc 7647   < clt 7824  cle 7825  0cn0 9001  cz 9078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079
This theorem is referenced by:  nn0seqcvgd  11758
  Copyright terms: Public domain W3C validator