Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ercnv | GIF version |
Description: The converse of an equivalence relation is itself. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ercnv | ⊢ (𝑅 Er 𝐴 → ◡𝑅 = 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | errel 6510 | . 2 ⊢ (𝑅 Er 𝐴 → Rel 𝑅) | |
2 | relcnv 4982 | . . 3 ⊢ Rel ◡𝑅 | |
3 | id 19 | . . . . . 6 ⊢ (𝑅 Er 𝐴 → 𝑅 Er 𝐴) | |
4 | 3 | ersymb 6515 | . . . . 5 ⊢ (𝑅 Er 𝐴 → (𝑦𝑅𝑥 ↔ 𝑥𝑅𝑦)) |
5 | vex 2729 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
6 | vex 2729 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
7 | 5, 6 | brcnv 4787 | . . . . . 6 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
8 | df-br 3983 | . . . . . 6 ⊢ (𝑥◡𝑅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ ◡𝑅) | |
9 | 7, 8 | bitr3i 185 | . . . . 5 ⊢ (𝑦𝑅𝑥 ↔ 〈𝑥, 𝑦〉 ∈ ◡𝑅) |
10 | df-br 3983 | . . . . 5 ⊢ (𝑥𝑅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) | |
11 | 4, 9, 10 | 3bitr3g 221 | . . . 4 ⊢ (𝑅 Er 𝐴 → (〈𝑥, 𝑦〉 ∈ ◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅)) |
12 | 11 | eqrelrdv2 4703 | . . 3 ⊢ (((Rel ◡𝑅 ∧ Rel 𝑅) ∧ 𝑅 Er 𝐴) → ◡𝑅 = 𝑅) |
13 | 2, 12 | mpanl1 431 | . 2 ⊢ ((Rel 𝑅 ∧ 𝑅 Er 𝐴) → ◡𝑅 = 𝑅) |
14 | 1, 13 | mpancom 419 | 1 ⊢ (𝑅 Er 𝐴 → ◡𝑅 = 𝑅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 〈cop 3579 class class class wbr 3982 ◡ccnv 4603 Rel wrel 4609 Er wer 6498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-er 6501 |
This theorem is referenced by: errn 6523 |
Copyright terms: Public domain | W3C validator |