| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ercnv | GIF version | ||
| Description: The converse of an equivalence relation is itself. (Contributed by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| ercnv | ⊢ (𝑅 Er 𝐴 → ◡𝑅 = 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | errel 6636 | . 2 ⊢ (𝑅 Er 𝐴 → Rel 𝑅) | |
| 2 | relcnv 5065 | . . 3 ⊢ Rel ◡𝑅 | |
| 3 | id 19 | . . . . . 6 ⊢ (𝑅 Er 𝐴 → 𝑅 Er 𝐴) | |
| 4 | 3 | ersymb 6641 | . . . . 5 ⊢ (𝑅 Er 𝐴 → (𝑦𝑅𝑥 ↔ 𝑥𝑅𝑦)) |
| 5 | vex 2776 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 6 | vex 2776 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 7 | 5, 6 | brcnv 4865 | . . . . . 6 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
| 8 | df-br 4048 | . . . . . 6 ⊢ (𝑥◡𝑅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ ◡𝑅) | |
| 9 | 7, 8 | bitr3i 186 | . . . . 5 ⊢ (𝑦𝑅𝑥 ↔ 〈𝑥, 𝑦〉 ∈ ◡𝑅) |
| 10 | df-br 4048 | . . . . 5 ⊢ (𝑥𝑅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) | |
| 11 | 4, 9, 10 | 3bitr3g 222 | . . . 4 ⊢ (𝑅 Er 𝐴 → (〈𝑥, 𝑦〉 ∈ ◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅)) |
| 12 | 11 | eqrelrdv2 4778 | . . 3 ⊢ (((Rel ◡𝑅 ∧ Rel 𝑅) ∧ 𝑅 Er 𝐴) → ◡𝑅 = 𝑅) |
| 13 | 2, 12 | mpanl1 434 | . 2 ⊢ ((Rel 𝑅 ∧ 𝑅 Er 𝐴) → ◡𝑅 = 𝑅) |
| 14 | 1, 13 | mpancom 422 | 1 ⊢ (𝑅 Er 𝐴 → ◡𝑅 = 𝑅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 〈cop 3637 class class class wbr 4047 ◡ccnv 4678 Rel wrel 4684 Er wer 6624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-br 4048 df-opab 4110 df-xp 4685 df-rel 4686 df-cnv 4687 df-er 6627 |
| This theorem is referenced by: errn 6649 |
| Copyright terms: Public domain | W3C validator |