ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ercnv GIF version

Theorem ercnv 6416
Description: The converse of an equivalence relation is itself. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
ercnv (𝑅 Er 𝐴𝑅 = 𝑅)

Proof of Theorem ercnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 errel 6404 . 2 (𝑅 Er 𝐴 → Rel 𝑅)
2 relcnv 4885 . . 3 Rel 𝑅
3 id 19 . . . . . 6 (𝑅 Er 𝐴𝑅 Er 𝐴)
43ersymb 6409 . . . . 5 (𝑅 Er 𝐴 → (𝑦𝑅𝑥𝑥𝑅𝑦))
5 vex 2661 . . . . . . 7 𝑥 ∈ V
6 vex 2661 . . . . . . 7 𝑦 ∈ V
75, 6brcnv 4690 . . . . . 6 (𝑥𝑅𝑦𝑦𝑅𝑥)
8 df-br 3898 . . . . . 6 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
97, 8bitr3i 185 . . . . 5 (𝑦𝑅𝑥 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
10 df-br 3898 . . . . 5 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
114, 9, 103bitr3g 221 . . . 4 (𝑅 Er 𝐴 → (⟨𝑥, 𝑦⟩ ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
1211eqrelrdv2 4606 . . 3 (((Rel 𝑅 ∧ Rel 𝑅) ∧ 𝑅 Er 𝐴) → 𝑅 = 𝑅)
132, 12mpanl1 428 . 2 ((Rel 𝑅𝑅 Er 𝐴) → 𝑅 = 𝑅)
141, 13mpancom 416 1 (𝑅 Er 𝐴𝑅 = 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1314  wcel 1463  cop 3498   class class class wbr 3897  ccnv 4506  Rel wrel 4512   Er wer 6392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-v 2660  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-br 3898  df-opab 3958  df-xp 4513  df-rel 4514  df-cnv 4515  df-er 6395
This theorem is referenced by:  errn  6417
  Copyright terms: Public domain W3C validator