![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ercnv | GIF version |
Description: The converse of an equivalence relation is itself. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ercnv | ⊢ (𝑅 Er 𝐴 → ◡𝑅 = 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | errel 6544 | . 2 ⊢ (𝑅 Er 𝐴 → Rel 𝑅) | |
2 | relcnv 5007 | . . 3 ⊢ Rel ◡𝑅 | |
3 | id 19 | . . . . . 6 ⊢ (𝑅 Er 𝐴 → 𝑅 Er 𝐴) | |
4 | 3 | ersymb 6549 | . . . . 5 ⊢ (𝑅 Er 𝐴 → (𝑦𝑅𝑥 ↔ 𝑥𝑅𝑦)) |
5 | vex 2741 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
6 | vex 2741 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
7 | 5, 6 | brcnv 4811 | . . . . . 6 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
8 | df-br 4005 | . . . . . 6 ⊢ (𝑥◡𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ ◡𝑅) | |
9 | 7, 8 | bitr3i 186 | . . . . 5 ⊢ (𝑦𝑅𝑥 ↔ ⟨𝑥, 𝑦⟩ ∈ ◡𝑅) |
10 | df-br 4005 | . . . . 5 ⊢ (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅) | |
11 | 4, 9, 10 | 3bitr3g 222 | . . . 4 ⊢ (𝑅 Er 𝐴 → (⟨𝑥, 𝑦⟩ ∈ ◡𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)) |
12 | 11 | eqrelrdv2 4726 | . . 3 ⊢ (((Rel ◡𝑅 ∧ Rel 𝑅) ∧ 𝑅 Er 𝐴) → ◡𝑅 = 𝑅) |
13 | 2, 12 | mpanl1 434 | . 2 ⊢ ((Rel 𝑅 ∧ 𝑅 Er 𝐴) → ◡𝑅 = 𝑅) |
14 | 1, 13 | mpancom 422 | 1 ⊢ (𝑅 Er 𝐴 → ◡𝑅 = 𝑅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 ⟨cop 3596 class class class wbr 4004 ◡ccnv 4626 Rel wrel 4632 Er wer 6532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-br 4005 df-opab 4066 df-xp 4633 df-rel 4634 df-cnv 4635 df-er 6535 |
This theorem is referenced by: errn 6557 |
Copyright terms: Public domain | W3C validator |