ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ercnv GIF version

Theorem ercnv 6556
Description: The converse of an equivalence relation is itself. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
ercnv (𝑅 Er 𝐴𝑅 = 𝑅)

Proof of Theorem ercnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 errel 6544 . 2 (𝑅 Er 𝐴 → Rel 𝑅)
2 relcnv 5007 . . 3 Rel 𝑅
3 id 19 . . . . . 6 (𝑅 Er 𝐴𝑅 Er 𝐴)
43ersymb 6549 . . . . 5 (𝑅 Er 𝐴 → (𝑦𝑅𝑥𝑥𝑅𝑦))
5 vex 2741 . . . . . . 7 𝑥 ∈ V
6 vex 2741 . . . . . . 7 𝑦 ∈ V
75, 6brcnv 4811 . . . . . 6 (𝑥𝑅𝑦𝑦𝑅𝑥)
8 df-br 4005 . . . . . 6 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
97, 8bitr3i 186 . . . . 5 (𝑦𝑅𝑥 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
10 df-br 4005 . . . . 5 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
114, 9, 103bitr3g 222 . . . 4 (𝑅 Er 𝐴 → (⟨𝑥, 𝑦⟩ ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
1211eqrelrdv2 4726 . . 3 (((Rel 𝑅 ∧ Rel 𝑅) ∧ 𝑅 Er 𝐴) → 𝑅 = 𝑅)
132, 12mpanl1 434 . 2 ((Rel 𝑅𝑅 Er 𝐴) → 𝑅 = 𝑅)
141, 13mpancom 422 1 (𝑅 Er 𝐴𝑅 = 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  cop 3596   class class class wbr 4004  ccnv 4626  Rel wrel 4632   Er wer 6532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-br 4005  df-opab 4066  df-xp 4633  df-rel 4634  df-cnv 4635  df-er 6535
This theorem is referenced by:  errn  6557
  Copyright terms: Public domain W3C validator