ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ercnv GIF version

Theorem ercnv 6610
Description: The converse of an equivalence relation is itself. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
ercnv (𝑅 Er 𝐴𝑅 = 𝑅)

Proof of Theorem ercnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 errel 6598 . 2 (𝑅 Er 𝐴 → Rel 𝑅)
2 relcnv 5044 . . 3 Rel 𝑅
3 id 19 . . . . . 6 (𝑅 Er 𝐴𝑅 Er 𝐴)
43ersymb 6603 . . . . 5 (𝑅 Er 𝐴 → (𝑦𝑅𝑥𝑥𝑅𝑦))
5 vex 2763 . . . . . . 7 𝑥 ∈ V
6 vex 2763 . . . . . . 7 𝑦 ∈ V
75, 6brcnv 4846 . . . . . 6 (𝑥𝑅𝑦𝑦𝑅𝑥)
8 df-br 4031 . . . . . 6 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
97, 8bitr3i 186 . . . . 5 (𝑦𝑅𝑥 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
10 df-br 4031 . . . . 5 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
114, 9, 103bitr3g 222 . . . 4 (𝑅 Er 𝐴 → (⟨𝑥, 𝑦⟩ ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
1211eqrelrdv2 4759 . . 3 (((Rel 𝑅 ∧ Rel 𝑅) ∧ 𝑅 Er 𝐴) → 𝑅 = 𝑅)
132, 12mpanl1 434 . 2 ((Rel 𝑅𝑅 Er 𝐴) → 𝑅 = 𝑅)
141, 13mpancom 422 1 (𝑅 Er 𝐴𝑅 = 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  cop 3622   class class class wbr 4030  ccnv 4659  Rel wrel 4665   Er wer 6586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-rel 4667  df-cnv 4668  df-er 6589
This theorem is referenced by:  errn  6611
  Copyright terms: Public domain W3C validator