| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ercnv | GIF version | ||
| Description: The converse of an equivalence relation is itself. (Contributed by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| ercnv | ⊢ (𝑅 Er 𝐴 → ◡𝑅 = 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | errel 6610 | . 2 ⊢ (𝑅 Er 𝐴 → Rel 𝑅) | |
| 2 | relcnv 5048 | . . 3 ⊢ Rel ◡𝑅 | |
| 3 | id 19 | . . . . . 6 ⊢ (𝑅 Er 𝐴 → 𝑅 Er 𝐴) | |
| 4 | 3 | ersymb 6615 | . . . . 5 ⊢ (𝑅 Er 𝐴 → (𝑦𝑅𝑥 ↔ 𝑥𝑅𝑦)) |
| 5 | vex 2766 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 6 | vex 2766 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 7 | 5, 6 | brcnv 4850 | . . . . . 6 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
| 8 | df-br 4035 | . . . . . 6 ⊢ (𝑥◡𝑅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ ◡𝑅) | |
| 9 | 7, 8 | bitr3i 186 | . . . . 5 ⊢ (𝑦𝑅𝑥 ↔ 〈𝑥, 𝑦〉 ∈ ◡𝑅) |
| 10 | df-br 4035 | . . . . 5 ⊢ (𝑥𝑅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) | |
| 11 | 4, 9, 10 | 3bitr3g 222 | . . . 4 ⊢ (𝑅 Er 𝐴 → (〈𝑥, 𝑦〉 ∈ ◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅)) |
| 12 | 11 | eqrelrdv2 4763 | . . 3 ⊢ (((Rel ◡𝑅 ∧ Rel 𝑅) ∧ 𝑅 Er 𝐴) → ◡𝑅 = 𝑅) |
| 13 | 2, 12 | mpanl1 434 | . 2 ⊢ ((Rel 𝑅 ∧ 𝑅 Er 𝐴) → ◡𝑅 = 𝑅) |
| 14 | 1, 13 | mpancom 422 | 1 ⊢ (𝑅 Er 𝐴 → ◡𝑅 = 𝑅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 〈cop 3626 class class class wbr 4034 ◡ccnv 4663 Rel wrel 4669 Er wer 6598 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 df-rel 4671 df-cnv 4672 df-er 6601 |
| This theorem is referenced by: errn 6623 |
| Copyright terms: Public domain | W3C validator |