ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzp1b GIF version

Theorem elfzp1b 9507
Description: An integer is a member of a 0-based finite set of sequential integers iff its successor is a member of the corresponding 1-based set. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
elfzp1b ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...(𝑁 − 1)) ↔ (𝐾 + 1) ∈ (1...𝑁)))

Proof of Theorem elfzp1b
StepHypRef Expression
1 peano2z 8784 . . . 4 (𝐾 ∈ ℤ → (𝐾 + 1) ∈ ℤ)
2 1z 8774 . . . . 5 1 ∈ ℤ
3 fzsubel 9471 . . . . . 6 (((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 + 1) ∈ ℤ ∧ 1 ∈ ℤ)) → ((𝐾 + 1) ∈ (1...𝑁) ↔ ((𝐾 + 1) − 1) ∈ ((1 − 1)...(𝑁 − 1))))
42, 3mpanl1 425 . . . . 5 ((𝑁 ∈ ℤ ∧ ((𝐾 + 1) ∈ ℤ ∧ 1 ∈ ℤ)) → ((𝐾 + 1) ∈ (1...𝑁) ↔ ((𝐾 + 1) − 1) ∈ ((1 − 1)...(𝑁 − 1))))
52, 4mpanr2 429 . . . 4 ((𝑁 ∈ ℤ ∧ (𝐾 + 1) ∈ ℤ) → ((𝐾 + 1) ∈ (1...𝑁) ↔ ((𝐾 + 1) − 1) ∈ ((1 − 1)...(𝑁 − 1))))
61, 5sylan2 280 . . 3 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐾 + 1) ∈ (1...𝑁) ↔ ((𝐾 + 1) − 1) ∈ ((1 − 1)...(𝑁 − 1))))
76ancoms 264 . 2 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 + 1) ∈ (1...𝑁) ↔ ((𝐾 + 1) − 1) ∈ ((1 − 1)...(𝑁 − 1))))
8 zcn 8753 . . . . 5 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
9 ax-1cn 7436 . . . . 5 1 ∈ ℂ
10 pncan 7686 . . . . 5 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 + 1) − 1) = 𝐾)
118, 9, 10sylancl 404 . . . 4 (𝐾 ∈ ℤ → ((𝐾 + 1) − 1) = 𝐾)
12 1m1e0 8489 . . . . . 6 (1 − 1) = 0
1312oveq1i 5662 . . . . 5 ((1 − 1)...(𝑁 − 1)) = (0...(𝑁 − 1))
1413a1i 9 . . . 4 (𝐾 ∈ ℤ → ((1 − 1)...(𝑁 − 1)) = (0...(𝑁 − 1)))
1511, 14eleq12d 2158 . . 3 (𝐾 ∈ ℤ → (((𝐾 + 1) − 1) ∈ ((1 − 1)...(𝑁 − 1)) ↔ 𝐾 ∈ (0...(𝑁 − 1))))
1615adantr 270 . 2 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 + 1) − 1) ∈ ((1 − 1)...(𝑁 − 1)) ↔ 𝐾 ∈ (0...(𝑁 − 1))))
177, 16bitr2d 187 1 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...(𝑁 − 1)) ↔ (𝐾 + 1) ∈ (1...𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1289  wcel 1438  (class class class)co 5652  cc 7346  0cc0 7348  1c1 7349   + caddc 7351  cmin 7651  cz 8748  ...cfz 9422
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-cnex 7434  ax-resscn 7435  ax-1cn 7436  ax-1re 7437  ax-icn 7438  ax-addcl 7439  ax-addrcl 7440  ax-mulcl 7441  ax-addcom 7443  ax-addass 7445  ax-distr 7447  ax-i2m1 7448  ax-0lt1 7449  ax-0id 7451  ax-rnegex 7452  ax-cnre 7454  ax-pre-ltirr 7455  ax-pre-ltwlin 7456  ax-pre-lttrn 7457  ax-pre-ltadd 7459
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-br 3846  df-opab 3900  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-iota 4980  df-fun 5017  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-pnf 7522  df-mnf 7523  df-xr 7524  df-ltxr 7525  df-le 7526  df-sub 7653  df-neg 7654  df-inn 8421  df-n0 8672  df-z 8749  df-fz 9423
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator