ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ge0gtmnf GIF version

Theorem ge0gtmnf 9709
Description: A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
ge0gtmnf ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → -∞ < 𝐴)

Proof of Theorem ge0gtmnf
StepHypRef Expression
1 mnflt0 9673 . 2 -∞ < 0
2 mnfxr 7917 . . . 4 -∞ ∈ ℝ*
3 0xr 7907 . . . 4 0 ∈ ℝ*
4 xrltletr 9693 . . . 4 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*𝐴 ∈ ℝ*) → ((-∞ < 0 ∧ 0 ≤ 𝐴) → -∞ < 𝐴))
52, 3, 4mp3an12 1309 . . 3 (𝐴 ∈ ℝ* → ((-∞ < 0 ∧ 0 ≤ 𝐴) → -∞ < 𝐴))
65imp 123 . 2 ((𝐴 ∈ ℝ* ∧ (-∞ < 0 ∧ 0 ≤ 𝐴)) → -∞ < 𝐴)
71, 6mpanr1 434 1 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → -∞ < 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2128   class class class wbr 3965  0cc0 7715  -∞cmnf 7893  *cxr 7894   < clt 7895  cle 7896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-cnex 7806  ax-resscn 7807  ax-1re 7809  ax-addrcl 7812  ax-rnegex 7824  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-po 4255  df-iso 4256  df-xp 4589  df-cnv 4591  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901
This theorem is referenced by:  ge0nemnf  9710  xrrege0  9711
  Copyright terms: Public domain W3C validator