ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axcnre GIF version

Theorem axcnre 7795
Description: A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-cnre 7837. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axcnre (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem axcnre
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-c 7732 . 2 ℂ = (R × R)
2 eqeq1 2164 . . 3 (⟨𝑧, 𝑤⟩ = 𝐴 → (⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦)) ↔ 𝐴 = (𝑥 + (i · 𝑦))))
322rexbidv 2482 . 2 (⟨𝑧, 𝑤⟩ = 𝐴 → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦)) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))))
4 opelreal 7741 . . . . . 6 (⟨𝑧, 0R⟩ ∈ ℝ ↔ 𝑧R)
5 opelreal 7741 . . . . . 6 (⟨𝑤, 0R⟩ ∈ ℝ ↔ 𝑤R)
64, 5anbi12i 456 . . . . 5 ((⟨𝑧, 0R⟩ ∈ ℝ ∧ ⟨𝑤, 0R⟩ ∈ ℝ) ↔ (𝑧R𝑤R))
76biimpri 132 . . . 4 ((𝑧R𝑤R) → (⟨𝑧, 0R⟩ ∈ ℝ ∧ ⟨𝑤, 0R⟩ ∈ ℝ))
8 df-i 7735 . . . . . . . . 9 i = ⟨0R, 1R
98oveq1i 5831 . . . . . . . 8 (i · ⟨𝑤, 0R⟩) = (⟨0R, 1R⟩ · ⟨𝑤, 0R⟩)
10 0r 7664 . . . . . . . . . 10 0RR
11 1sr 7665 . . . . . . . . . . 11 1RR
12 mulcnsr 7749 . . . . . . . . . . 11 (((0RR ∧ 1RR) ∧ (𝑤R ∧ 0RR)) → (⟨0R, 1R⟩ · ⟨𝑤, 0R⟩) = ⟨((0R ·R 𝑤) +R (-1R ·R (1R ·R 0R))), ((1R ·R 𝑤) +R (0R ·R 0R))⟩)
1310, 11, 12mpanl12 433 . . . . . . . . . 10 ((𝑤R ∧ 0RR) → (⟨0R, 1R⟩ · ⟨𝑤, 0R⟩) = ⟨((0R ·R 𝑤) +R (-1R ·R (1R ·R 0R))), ((1R ·R 𝑤) +R (0R ·R 0R))⟩)
1410, 13mpan2 422 . . . . . . . . 9 (𝑤R → (⟨0R, 1R⟩ · ⟨𝑤, 0R⟩) = ⟨((0R ·R 𝑤) +R (-1R ·R (1R ·R 0R))), ((1R ·R 𝑤) +R (0R ·R 0R))⟩)
15 mulcomsrg 7671 . . . . . . . . . . . . . 14 ((0RR𝑤R) → (0R ·R 𝑤) = (𝑤 ·R 0R))
1610, 15mpan 421 . . . . . . . . . . . . 13 (𝑤R → (0R ·R 𝑤) = (𝑤 ·R 0R))
17 00sr 7683 . . . . . . . . . . . . 13 (𝑤R → (𝑤 ·R 0R) = 0R)
1816, 17eqtrd 2190 . . . . . . . . . . . 12 (𝑤R → (0R ·R 𝑤) = 0R)
1918oveq1d 5836 . . . . . . . . . . 11 (𝑤R → ((0R ·R 𝑤) +R (-1R ·R (1R ·R 0R))) = (0R +R (-1R ·R (1R ·R 0R))))
20 00sr 7683 . . . . . . . . . . . . . . . 16 (1RR → (1R ·R 0R) = 0R)
2111, 20ax-mp 5 . . . . . . . . . . . . . . 15 (1R ·R 0R) = 0R
2221oveq2i 5832 . . . . . . . . . . . . . 14 (-1R ·R (1R ·R 0R)) = (-1R ·R 0R)
23 m1r 7666 . . . . . . . . . . . . . . 15 -1RR
24 00sr 7683 . . . . . . . . . . . . . . 15 (-1RR → (-1R ·R 0R) = 0R)
2523, 24ax-mp 5 . . . . . . . . . . . . . 14 (-1R ·R 0R) = 0R
2622, 25eqtri 2178 . . . . . . . . . . . . 13 (-1R ·R (1R ·R 0R)) = 0R
2726oveq2i 5832 . . . . . . . . . . . 12 (0R +R (-1R ·R (1R ·R 0R))) = (0R +R 0R)
28 0idsr 7681 . . . . . . . . . . . . 13 (0RR → (0R +R 0R) = 0R)
2910, 28ax-mp 5 . . . . . . . . . . . 12 (0R +R 0R) = 0R
3027, 29eqtri 2178 . . . . . . . . . . 11 (0R +R (-1R ·R (1R ·R 0R))) = 0R
3119, 30eqtrdi 2206 . . . . . . . . . 10 (𝑤R → ((0R ·R 𝑤) +R (-1R ·R (1R ·R 0R))) = 0R)
32 mulcomsrg 7671 . . . . . . . . . . . . . 14 ((1RR𝑤R) → (1R ·R 𝑤) = (𝑤 ·R 1R))
3311, 32mpan 421 . . . . . . . . . . . . 13 (𝑤R → (1R ·R 𝑤) = (𝑤 ·R 1R))
34 1idsr 7682 . . . . . . . . . . . . 13 (𝑤R → (𝑤 ·R 1R) = 𝑤)
3533, 34eqtrd 2190 . . . . . . . . . . . 12 (𝑤R → (1R ·R 𝑤) = 𝑤)
3635oveq1d 5836 . . . . . . . . . . 11 (𝑤R → ((1R ·R 𝑤) +R (0R ·R 0R)) = (𝑤 +R (0R ·R 0R)))
37 00sr 7683 . . . . . . . . . . . . . 14 (0RR → (0R ·R 0R) = 0R)
3810, 37ax-mp 5 . . . . . . . . . . . . 13 (0R ·R 0R) = 0R
3938oveq2i 5832 . . . . . . . . . . . 12 (𝑤 +R (0R ·R 0R)) = (𝑤 +R 0R)
40 0idsr 7681 . . . . . . . . . . . 12 (𝑤R → (𝑤 +R 0R) = 𝑤)
4139, 40syl5eq 2202 . . . . . . . . . . 11 (𝑤R → (𝑤 +R (0R ·R 0R)) = 𝑤)
4236, 41eqtrd 2190 . . . . . . . . . 10 (𝑤R → ((1R ·R 𝑤) +R (0R ·R 0R)) = 𝑤)
4331, 42opeq12d 3749 . . . . . . . . 9 (𝑤R → ⟨((0R ·R 𝑤) +R (-1R ·R (1R ·R 0R))), ((1R ·R 𝑤) +R (0R ·R 0R))⟩ = ⟨0R, 𝑤⟩)
4414, 43eqtrd 2190 . . . . . . . 8 (𝑤R → (⟨0R, 1R⟩ · ⟨𝑤, 0R⟩) = ⟨0R, 𝑤⟩)
459, 44syl5eq 2202 . . . . . . 7 (𝑤R → (i · ⟨𝑤, 0R⟩) = ⟨0R, 𝑤⟩)
4645oveq2d 5837 . . . . . 6 (𝑤R → (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩)) = (⟨𝑧, 0R⟩ + ⟨0R, 𝑤⟩))
4746adantl 275 . . . . 5 ((𝑧R𝑤R) → (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩)) = (⟨𝑧, 0R⟩ + ⟨0R, 𝑤⟩))
48 addcnsr 7748 . . . . . . 7 (((𝑧R ∧ 0RR) ∧ (0RR𝑤R)) → (⟨𝑧, 0R⟩ + ⟨0R, 𝑤⟩) = ⟨(𝑧 +R 0R), (0R +R 𝑤)⟩)
4910, 48mpanl2 432 . . . . . 6 ((𝑧R ∧ (0RR𝑤R)) → (⟨𝑧, 0R⟩ + ⟨0R, 𝑤⟩) = ⟨(𝑧 +R 0R), (0R +R 𝑤)⟩)
5010, 49mpanr1 434 . . . . 5 ((𝑧R𝑤R) → (⟨𝑧, 0R⟩ + ⟨0R, 𝑤⟩) = ⟨(𝑧 +R 0R), (0R +R 𝑤)⟩)
51 0idsr 7681 . . . . . 6 (𝑧R → (𝑧 +R 0R) = 𝑧)
52 addcomsrg 7669 . . . . . . . 8 ((0RR𝑤R) → (0R +R 𝑤) = (𝑤 +R 0R))
5310, 52mpan 421 . . . . . . 7 (𝑤R → (0R +R 𝑤) = (𝑤 +R 0R))
5453, 40eqtrd 2190 . . . . . 6 (𝑤R → (0R +R 𝑤) = 𝑤)
55 opeq12 3743 . . . . . 6 (((𝑧 +R 0R) = 𝑧 ∧ (0R +R 𝑤) = 𝑤) → ⟨(𝑧 +R 0R), (0R +R 𝑤)⟩ = ⟨𝑧, 𝑤⟩)
5651, 54, 55syl2an 287 . . . . 5 ((𝑧R𝑤R) → ⟨(𝑧 +R 0R), (0R +R 𝑤)⟩ = ⟨𝑧, 𝑤⟩)
5747, 50, 563eqtrrd 2195 . . . 4 ((𝑧R𝑤R) → ⟨𝑧, 𝑤⟩ = (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩)))
58 vex 2715 . . . . . 6 𝑧 ∈ V
59 opexg 4188 . . . . . 6 ((𝑧 ∈ V ∧ 0RR) → ⟨𝑧, 0R⟩ ∈ V)
6058, 10, 59mp2an 423 . . . . 5 𝑧, 0R⟩ ∈ V
61 vex 2715 . . . . . 6 𝑤 ∈ V
62 opexg 4188 . . . . . 6 ((𝑤 ∈ V ∧ 0RR) → ⟨𝑤, 0R⟩ ∈ V)
6361, 10, 62mp2an 423 . . . . 5 𝑤, 0R⟩ ∈ V
64 eleq1 2220 . . . . . . 7 (𝑥 = ⟨𝑧, 0R⟩ → (𝑥 ∈ ℝ ↔ ⟨𝑧, 0R⟩ ∈ ℝ))
65 eleq1 2220 . . . . . . 7 (𝑦 = ⟨𝑤, 0R⟩ → (𝑦 ∈ ℝ ↔ ⟨𝑤, 0R⟩ ∈ ℝ))
6664, 65bi2anan9 596 . . . . . 6 ((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) → ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ↔ (⟨𝑧, 0R⟩ ∈ ℝ ∧ ⟨𝑤, 0R⟩ ∈ ℝ)))
67 oveq1 5828 . . . . . . . 8 (𝑥 = ⟨𝑧, 0R⟩ → (𝑥 + (i · 𝑦)) = (⟨𝑧, 0R⟩ + (i · 𝑦)))
68 oveq2 5829 . . . . . . . . 9 (𝑦 = ⟨𝑤, 0R⟩ → (i · 𝑦) = (i · ⟨𝑤, 0R⟩))
6968oveq2d 5837 . . . . . . . 8 (𝑦 = ⟨𝑤, 0R⟩ → (⟨𝑧, 0R⟩ + (i · 𝑦)) = (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩)))
7067, 69sylan9eq 2210 . . . . . . 7 ((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) → (𝑥 + (i · 𝑦)) = (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩)))
7170eqeq2d 2169 . . . . . 6 ((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) → (⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦)) ↔ ⟨𝑧, 𝑤⟩ = (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩))))
7266, 71anbi12d 465 . . . . 5 ((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) → (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦))) ↔ ((⟨𝑧, 0R⟩ ∈ ℝ ∧ ⟨𝑤, 0R⟩ ∈ ℝ) ∧ ⟨𝑧, 𝑤⟩ = (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩)))))
7360, 63, 72spc2ev 2808 . . . 4 (((⟨𝑧, 0R⟩ ∈ ℝ ∧ ⟨𝑤, 0R⟩ ∈ ℝ) ∧ ⟨𝑧, 𝑤⟩ = (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩))) → ∃𝑥𝑦((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦))))
747, 57, 73syl2anc 409 . . 3 ((𝑧R𝑤R) → ∃𝑥𝑦((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦))))
75 r2ex 2477 . . 3 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦)) ↔ ∃𝑥𝑦((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦))))
7674, 75sylibr 133 . 2 ((𝑧R𝑤R) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦)))
771, 3, 76optocl 4661 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1335  wex 1472  wcel 2128  wrex 2436  Vcvv 2712  cop 3563  (class class class)co 5821  Rcnr 7211  0Rc0r 7212  1Rc1r 7213  -1Rcm1r 7214   +R cplr 7215   ·R cmr 7216  cc 7724  cr 7725  ici 7728   + caddc 7729   · cmul 7731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-eprel 4249  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-irdg 6314  df-1o 6360  df-2o 6361  df-oadd 6364  df-omul 6365  df-er 6477  df-ec 6479  df-qs 6483  df-ni 7218  df-pli 7219  df-mi 7220  df-lti 7221  df-plpq 7258  df-mpq 7259  df-enq 7261  df-nqqs 7262  df-plqqs 7263  df-mqqs 7264  df-1nqqs 7265  df-rq 7266  df-ltnqqs 7267  df-enq0 7338  df-nq0 7339  df-0nq0 7340  df-plq0 7341  df-mq0 7342  df-inp 7380  df-i1p 7381  df-iplp 7382  df-imp 7383  df-enr 7640  df-nr 7641  df-plr 7642  df-mr 7643  df-0r 7645  df-1r 7646  df-m1r 7647  df-c 7732  df-i 7735  df-r 7736  df-add 7737  df-mul 7738
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator