ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axcnre GIF version

Theorem axcnre 8014
Description: A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-cnre 8056. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axcnre (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem axcnre
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-c 7951 . 2 ℂ = (R × R)
2 eqeq1 2213 . . 3 (⟨𝑧, 𝑤⟩ = 𝐴 → (⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦)) ↔ 𝐴 = (𝑥 + (i · 𝑦))))
322rexbidv 2532 . 2 (⟨𝑧, 𝑤⟩ = 𝐴 → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦)) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))))
4 opelreal 7960 . . . . . 6 (⟨𝑧, 0R⟩ ∈ ℝ ↔ 𝑧R)
5 opelreal 7960 . . . . . 6 (⟨𝑤, 0R⟩ ∈ ℝ ↔ 𝑤R)
64, 5anbi12i 460 . . . . 5 ((⟨𝑧, 0R⟩ ∈ ℝ ∧ ⟨𝑤, 0R⟩ ∈ ℝ) ↔ (𝑧R𝑤R))
76biimpri 133 . . . 4 ((𝑧R𝑤R) → (⟨𝑧, 0R⟩ ∈ ℝ ∧ ⟨𝑤, 0R⟩ ∈ ℝ))
8 df-i 7954 . . . . . . . . 9 i = ⟨0R, 1R
98oveq1i 5967 . . . . . . . 8 (i · ⟨𝑤, 0R⟩) = (⟨0R, 1R⟩ · ⟨𝑤, 0R⟩)
10 0r 7883 . . . . . . . . . 10 0RR
11 1sr 7884 . . . . . . . . . . 11 1RR
12 mulcnsr 7968 . . . . . . . . . . 11 (((0RR ∧ 1RR) ∧ (𝑤R ∧ 0RR)) → (⟨0R, 1R⟩ · ⟨𝑤, 0R⟩) = ⟨((0R ·R 𝑤) +R (-1R ·R (1R ·R 0R))), ((1R ·R 𝑤) +R (0R ·R 0R))⟩)
1310, 11, 12mpanl12 436 . . . . . . . . . 10 ((𝑤R ∧ 0RR) → (⟨0R, 1R⟩ · ⟨𝑤, 0R⟩) = ⟨((0R ·R 𝑤) +R (-1R ·R (1R ·R 0R))), ((1R ·R 𝑤) +R (0R ·R 0R))⟩)
1410, 13mpan2 425 . . . . . . . . 9 (𝑤R → (⟨0R, 1R⟩ · ⟨𝑤, 0R⟩) = ⟨((0R ·R 𝑤) +R (-1R ·R (1R ·R 0R))), ((1R ·R 𝑤) +R (0R ·R 0R))⟩)
15 mulcomsrg 7890 . . . . . . . . . . . . . 14 ((0RR𝑤R) → (0R ·R 𝑤) = (𝑤 ·R 0R))
1610, 15mpan 424 . . . . . . . . . . . . 13 (𝑤R → (0R ·R 𝑤) = (𝑤 ·R 0R))
17 00sr 7902 . . . . . . . . . . . . 13 (𝑤R → (𝑤 ·R 0R) = 0R)
1816, 17eqtrd 2239 . . . . . . . . . . . 12 (𝑤R → (0R ·R 𝑤) = 0R)
1918oveq1d 5972 . . . . . . . . . . 11 (𝑤R → ((0R ·R 𝑤) +R (-1R ·R (1R ·R 0R))) = (0R +R (-1R ·R (1R ·R 0R))))
20 00sr 7902 . . . . . . . . . . . . . . . 16 (1RR → (1R ·R 0R) = 0R)
2111, 20ax-mp 5 . . . . . . . . . . . . . . 15 (1R ·R 0R) = 0R
2221oveq2i 5968 . . . . . . . . . . . . . 14 (-1R ·R (1R ·R 0R)) = (-1R ·R 0R)
23 m1r 7885 . . . . . . . . . . . . . . 15 -1RR
24 00sr 7902 . . . . . . . . . . . . . . 15 (-1RR → (-1R ·R 0R) = 0R)
2523, 24ax-mp 5 . . . . . . . . . . . . . 14 (-1R ·R 0R) = 0R
2622, 25eqtri 2227 . . . . . . . . . . . . 13 (-1R ·R (1R ·R 0R)) = 0R
2726oveq2i 5968 . . . . . . . . . . . 12 (0R +R (-1R ·R (1R ·R 0R))) = (0R +R 0R)
28 0idsr 7900 . . . . . . . . . . . . 13 (0RR → (0R +R 0R) = 0R)
2910, 28ax-mp 5 . . . . . . . . . . . 12 (0R +R 0R) = 0R
3027, 29eqtri 2227 . . . . . . . . . . 11 (0R +R (-1R ·R (1R ·R 0R))) = 0R
3119, 30eqtrdi 2255 . . . . . . . . . 10 (𝑤R → ((0R ·R 𝑤) +R (-1R ·R (1R ·R 0R))) = 0R)
32 mulcomsrg 7890 . . . . . . . . . . . . . 14 ((1RR𝑤R) → (1R ·R 𝑤) = (𝑤 ·R 1R))
3311, 32mpan 424 . . . . . . . . . . . . 13 (𝑤R → (1R ·R 𝑤) = (𝑤 ·R 1R))
34 1idsr 7901 . . . . . . . . . . . . 13 (𝑤R → (𝑤 ·R 1R) = 𝑤)
3533, 34eqtrd 2239 . . . . . . . . . . . 12 (𝑤R → (1R ·R 𝑤) = 𝑤)
3635oveq1d 5972 . . . . . . . . . . 11 (𝑤R → ((1R ·R 𝑤) +R (0R ·R 0R)) = (𝑤 +R (0R ·R 0R)))
37 00sr 7902 . . . . . . . . . . . . . 14 (0RR → (0R ·R 0R) = 0R)
3810, 37ax-mp 5 . . . . . . . . . . . . 13 (0R ·R 0R) = 0R
3938oveq2i 5968 . . . . . . . . . . . 12 (𝑤 +R (0R ·R 0R)) = (𝑤 +R 0R)
40 0idsr 7900 . . . . . . . . . . . 12 (𝑤R → (𝑤 +R 0R) = 𝑤)
4139, 40eqtrid 2251 . . . . . . . . . . 11 (𝑤R → (𝑤 +R (0R ·R 0R)) = 𝑤)
4236, 41eqtrd 2239 . . . . . . . . . 10 (𝑤R → ((1R ·R 𝑤) +R (0R ·R 0R)) = 𝑤)
4331, 42opeq12d 3833 . . . . . . . . 9 (𝑤R → ⟨((0R ·R 𝑤) +R (-1R ·R (1R ·R 0R))), ((1R ·R 𝑤) +R (0R ·R 0R))⟩ = ⟨0R, 𝑤⟩)
4414, 43eqtrd 2239 . . . . . . . 8 (𝑤R → (⟨0R, 1R⟩ · ⟨𝑤, 0R⟩) = ⟨0R, 𝑤⟩)
459, 44eqtrid 2251 . . . . . . 7 (𝑤R → (i · ⟨𝑤, 0R⟩) = ⟨0R, 𝑤⟩)
4645oveq2d 5973 . . . . . 6 (𝑤R → (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩)) = (⟨𝑧, 0R⟩ + ⟨0R, 𝑤⟩))
4746adantl 277 . . . . 5 ((𝑧R𝑤R) → (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩)) = (⟨𝑧, 0R⟩ + ⟨0R, 𝑤⟩))
48 addcnsr 7967 . . . . . . 7 (((𝑧R ∧ 0RR) ∧ (0RR𝑤R)) → (⟨𝑧, 0R⟩ + ⟨0R, 𝑤⟩) = ⟨(𝑧 +R 0R), (0R +R 𝑤)⟩)
4910, 48mpanl2 435 . . . . . 6 ((𝑧R ∧ (0RR𝑤R)) → (⟨𝑧, 0R⟩ + ⟨0R, 𝑤⟩) = ⟨(𝑧 +R 0R), (0R +R 𝑤)⟩)
5010, 49mpanr1 437 . . . . 5 ((𝑧R𝑤R) → (⟨𝑧, 0R⟩ + ⟨0R, 𝑤⟩) = ⟨(𝑧 +R 0R), (0R +R 𝑤)⟩)
51 0idsr 7900 . . . . . 6 (𝑧R → (𝑧 +R 0R) = 𝑧)
52 addcomsrg 7888 . . . . . . . 8 ((0RR𝑤R) → (0R +R 𝑤) = (𝑤 +R 0R))
5310, 52mpan 424 . . . . . . 7 (𝑤R → (0R +R 𝑤) = (𝑤 +R 0R))
5453, 40eqtrd 2239 . . . . . 6 (𝑤R → (0R +R 𝑤) = 𝑤)
55 opeq12 3827 . . . . . 6 (((𝑧 +R 0R) = 𝑧 ∧ (0R +R 𝑤) = 𝑤) → ⟨(𝑧 +R 0R), (0R +R 𝑤)⟩ = ⟨𝑧, 𝑤⟩)
5651, 54, 55syl2an 289 . . . . 5 ((𝑧R𝑤R) → ⟨(𝑧 +R 0R), (0R +R 𝑤)⟩ = ⟨𝑧, 𝑤⟩)
5747, 50, 563eqtrrd 2244 . . . 4 ((𝑧R𝑤R) → ⟨𝑧, 𝑤⟩ = (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩)))
58 vex 2776 . . . . . 6 𝑧 ∈ V
59 opexg 4280 . . . . . 6 ((𝑧 ∈ V ∧ 0RR) → ⟨𝑧, 0R⟩ ∈ V)
6058, 10, 59mp2an 426 . . . . 5 𝑧, 0R⟩ ∈ V
61 vex 2776 . . . . . 6 𝑤 ∈ V
62 opexg 4280 . . . . . 6 ((𝑤 ∈ V ∧ 0RR) → ⟨𝑤, 0R⟩ ∈ V)
6361, 10, 62mp2an 426 . . . . 5 𝑤, 0R⟩ ∈ V
64 eleq1 2269 . . . . . . 7 (𝑥 = ⟨𝑧, 0R⟩ → (𝑥 ∈ ℝ ↔ ⟨𝑧, 0R⟩ ∈ ℝ))
65 eleq1 2269 . . . . . . 7 (𝑦 = ⟨𝑤, 0R⟩ → (𝑦 ∈ ℝ ↔ ⟨𝑤, 0R⟩ ∈ ℝ))
6664, 65bi2anan9 606 . . . . . 6 ((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) → ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ↔ (⟨𝑧, 0R⟩ ∈ ℝ ∧ ⟨𝑤, 0R⟩ ∈ ℝ)))
67 oveq1 5964 . . . . . . . 8 (𝑥 = ⟨𝑧, 0R⟩ → (𝑥 + (i · 𝑦)) = (⟨𝑧, 0R⟩ + (i · 𝑦)))
68 oveq2 5965 . . . . . . . . 9 (𝑦 = ⟨𝑤, 0R⟩ → (i · 𝑦) = (i · ⟨𝑤, 0R⟩))
6968oveq2d 5973 . . . . . . . 8 (𝑦 = ⟨𝑤, 0R⟩ → (⟨𝑧, 0R⟩ + (i · 𝑦)) = (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩)))
7067, 69sylan9eq 2259 . . . . . . 7 ((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) → (𝑥 + (i · 𝑦)) = (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩)))
7170eqeq2d 2218 . . . . . 6 ((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) → (⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦)) ↔ ⟨𝑧, 𝑤⟩ = (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩))))
7266, 71anbi12d 473 . . . . 5 ((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) → (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦))) ↔ ((⟨𝑧, 0R⟩ ∈ ℝ ∧ ⟨𝑤, 0R⟩ ∈ ℝ) ∧ ⟨𝑧, 𝑤⟩ = (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩)))))
7360, 63, 72spc2ev 2873 . . . 4 (((⟨𝑧, 0R⟩ ∈ ℝ ∧ ⟨𝑤, 0R⟩ ∈ ℝ) ∧ ⟨𝑧, 𝑤⟩ = (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩))) → ∃𝑥𝑦((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦))))
747, 57, 73syl2anc 411 . . 3 ((𝑧R𝑤R) → ∃𝑥𝑦((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦))))
75 r2ex 2527 . . 3 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦)) ↔ ∃𝑥𝑦((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦))))
7674, 75sylibr 134 . 2 ((𝑧R𝑤R) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦)))
771, 3, 76optocl 4759 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wex 1516  wcel 2177  wrex 2486  Vcvv 2773  cop 3641  (class class class)co 5957  Rcnr 7430  0Rc0r 7431  1Rc1r 7432  -1Rcm1r 7433   +R cplr 7434   ·R cmr 7435  cc 7943  cr 7944  ici 7947   + caddc 7948   · cmul 7950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-eprel 4344  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-1o 6515  df-2o 6516  df-oadd 6519  df-omul 6520  df-er 6633  df-ec 6635  df-qs 6639  df-ni 7437  df-pli 7438  df-mi 7439  df-lti 7440  df-plpq 7477  df-mpq 7478  df-enq 7480  df-nqqs 7481  df-plqqs 7482  df-mqqs 7483  df-1nqqs 7484  df-rq 7485  df-ltnqqs 7486  df-enq0 7557  df-nq0 7558  df-0nq0 7559  df-plq0 7560  df-mq0 7561  df-inp 7599  df-i1p 7600  df-iplp 7601  df-imp 7602  df-enr 7859  df-nr 7860  df-plr 7861  df-mr 7862  df-0r 7864  df-1r 7865  df-m1r 7866  df-c 7951  df-i 7954  df-r 7955  df-add 7956  df-mul 7957
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator