ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axcnre GIF version

Theorem axcnre 7657
Description: A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-cnre 7699. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axcnre (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem axcnre
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-c 7594 . 2 ℂ = (R × R)
2 eqeq1 2124 . . 3 (⟨𝑧, 𝑤⟩ = 𝐴 → (⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦)) ↔ 𝐴 = (𝑥 + (i · 𝑦))))
322rexbidv 2437 . 2 (⟨𝑧, 𝑤⟩ = 𝐴 → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦)) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))))
4 opelreal 7603 . . . . . 6 (⟨𝑧, 0R⟩ ∈ ℝ ↔ 𝑧R)
5 opelreal 7603 . . . . . 6 (⟨𝑤, 0R⟩ ∈ ℝ ↔ 𝑤R)
64, 5anbi12i 455 . . . . 5 ((⟨𝑧, 0R⟩ ∈ ℝ ∧ ⟨𝑤, 0R⟩ ∈ ℝ) ↔ (𝑧R𝑤R))
76biimpri 132 . . . 4 ((𝑧R𝑤R) → (⟨𝑧, 0R⟩ ∈ ℝ ∧ ⟨𝑤, 0R⟩ ∈ ℝ))
8 df-i 7597 . . . . . . . . 9 i = ⟨0R, 1R
98oveq1i 5752 . . . . . . . 8 (i · ⟨𝑤, 0R⟩) = (⟨0R, 1R⟩ · ⟨𝑤, 0R⟩)
10 0r 7526 . . . . . . . . . 10 0RR
11 1sr 7527 . . . . . . . . . . 11 1RR
12 mulcnsr 7611 . . . . . . . . . . 11 (((0RR ∧ 1RR) ∧ (𝑤R ∧ 0RR)) → (⟨0R, 1R⟩ · ⟨𝑤, 0R⟩) = ⟨((0R ·R 𝑤) +R (-1R ·R (1R ·R 0R))), ((1R ·R 𝑤) +R (0R ·R 0R))⟩)
1310, 11, 12mpanl12 432 . . . . . . . . . 10 ((𝑤R ∧ 0RR) → (⟨0R, 1R⟩ · ⟨𝑤, 0R⟩) = ⟨((0R ·R 𝑤) +R (-1R ·R (1R ·R 0R))), ((1R ·R 𝑤) +R (0R ·R 0R))⟩)
1410, 13mpan2 421 . . . . . . . . 9 (𝑤R → (⟨0R, 1R⟩ · ⟨𝑤, 0R⟩) = ⟨((0R ·R 𝑤) +R (-1R ·R (1R ·R 0R))), ((1R ·R 𝑤) +R (0R ·R 0R))⟩)
15 mulcomsrg 7533 . . . . . . . . . . . . . 14 ((0RR𝑤R) → (0R ·R 𝑤) = (𝑤 ·R 0R))
1610, 15mpan 420 . . . . . . . . . . . . 13 (𝑤R → (0R ·R 𝑤) = (𝑤 ·R 0R))
17 00sr 7545 . . . . . . . . . . . . 13 (𝑤R → (𝑤 ·R 0R) = 0R)
1816, 17eqtrd 2150 . . . . . . . . . . . 12 (𝑤R → (0R ·R 𝑤) = 0R)
1918oveq1d 5757 . . . . . . . . . . 11 (𝑤R → ((0R ·R 𝑤) +R (-1R ·R (1R ·R 0R))) = (0R +R (-1R ·R (1R ·R 0R))))
20 00sr 7545 . . . . . . . . . . . . . . . 16 (1RR → (1R ·R 0R) = 0R)
2111, 20ax-mp 5 . . . . . . . . . . . . . . 15 (1R ·R 0R) = 0R
2221oveq2i 5753 . . . . . . . . . . . . . 14 (-1R ·R (1R ·R 0R)) = (-1R ·R 0R)
23 m1r 7528 . . . . . . . . . . . . . . 15 -1RR
24 00sr 7545 . . . . . . . . . . . . . . 15 (-1RR → (-1R ·R 0R) = 0R)
2523, 24ax-mp 5 . . . . . . . . . . . . . 14 (-1R ·R 0R) = 0R
2622, 25eqtri 2138 . . . . . . . . . . . . 13 (-1R ·R (1R ·R 0R)) = 0R
2726oveq2i 5753 . . . . . . . . . . . 12 (0R +R (-1R ·R (1R ·R 0R))) = (0R +R 0R)
28 0idsr 7543 . . . . . . . . . . . . 13 (0RR → (0R +R 0R) = 0R)
2910, 28ax-mp 5 . . . . . . . . . . . 12 (0R +R 0R) = 0R
3027, 29eqtri 2138 . . . . . . . . . . 11 (0R +R (-1R ·R (1R ·R 0R))) = 0R
3119, 30syl6eq 2166 . . . . . . . . . 10 (𝑤R → ((0R ·R 𝑤) +R (-1R ·R (1R ·R 0R))) = 0R)
32 mulcomsrg 7533 . . . . . . . . . . . . . 14 ((1RR𝑤R) → (1R ·R 𝑤) = (𝑤 ·R 1R))
3311, 32mpan 420 . . . . . . . . . . . . 13 (𝑤R → (1R ·R 𝑤) = (𝑤 ·R 1R))
34 1idsr 7544 . . . . . . . . . . . . 13 (𝑤R → (𝑤 ·R 1R) = 𝑤)
3533, 34eqtrd 2150 . . . . . . . . . . . 12 (𝑤R → (1R ·R 𝑤) = 𝑤)
3635oveq1d 5757 . . . . . . . . . . 11 (𝑤R → ((1R ·R 𝑤) +R (0R ·R 0R)) = (𝑤 +R (0R ·R 0R)))
37 00sr 7545 . . . . . . . . . . . . . 14 (0RR → (0R ·R 0R) = 0R)
3810, 37ax-mp 5 . . . . . . . . . . . . 13 (0R ·R 0R) = 0R
3938oveq2i 5753 . . . . . . . . . . . 12 (𝑤 +R (0R ·R 0R)) = (𝑤 +R 0R)
40 0idsr 7543 . . . . . . . . . . . 12 (𝑤R → (𝑤 +R 0R) = 𝑤)
4139, 40syl5eq 2162 . . . . . . . . . . 11 (𝑤R → (𝑤 +R (0R ·R 0R)) = 𝑤)
4236, 41eqtrd 2150 . . . . . . . . . 10 (𝑤R → ((1R ·R 𝑤) +R (0R ·R 0R)) = 𝑤)
4331, 42opeq12d 3683 . . . . . . . . 9 (𝑤R → ⟨((0R ·R 𝑤) +R (-1R ·R (1R ·R 0R))), ((1R ·R 𝑤) +R (0R ·R 0R))⟩ = ⟨0R, 𝑤⟩)
4414, 43eqtrd 2150 . . . . . . . 8 (𝑤R → (⟨0R, 1R⟩ · ⟨𝑤, 0R⟩) = ⟨0R, 𝑤⟩)
459, 44syl5eq 2162 . . . . . . 7 (𝑤R → (i · ⟨𝑤, 0R⟩) = ⟨0R, 𝑤⟩)
4645oveq2d 5758 . . . . . 6 (𝑤R → (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩)) = (⟨𝑧, 0R⟩ + ⟨0R, 𝑤⟩))
4746adantl 275 . . . . 5 ((𝑧R𝑤R) → (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩)) = (⟨𝑧, 0R⟩ + ⟨0R, 𝑤⟩))
48 addcnsr 7610 . . . . . . 7 (((𝑧R ∧ 0RR) ∧ (0RR𝑤R)) → (⟨𝑧, 0R⟩ + ⟨0R, 𝑤⟩) = ⟨(𝑧 +R 0R), (0R +R 𝑤)⟩)
4910, 48mpanl2 431 . . . . . 6 ((𝑧R ∧ (0RR𝑤R)) → (⟨𝑧, 0R⟩ + ⟨0R, 𝑤⟩) = ⟨(𝑧 +R 0R), (0R +R 𝑤)⟩)
5010, 49mpanr1 433 . . . . 5 ((𝑧R𝑤R) → (⟨𝑧, 0R⟩ + ⟨0R, 𝑤⟩) = ⟨(𝑧 +R 0R), (0R +R 𝑤)⟩)
51 0idsr 7543 . . . . . 6 (𝑧R → (𝑧 +R 0R) = 𝑧)
52 addcomsrg 7531 . . . . . . . 8 ((0RR𝑤R) → (0R +R 𝑤) = (𝑤 +R 0R))
5310, 52mpan 420 . . . . . . 7 (𝑤R → (0R +R 𝑤) = (𝑤 +R 0R))
5453, 40eqtrd 2150 . . . . . 6 (𝑤R → (0R +R 𝑤) = 𝑤)
55 opeq12 3677 . . . . . 6 (((𝑧 +R 0R) = 𝑧 ∧ (0R +R 𝑤) = 𝑤) → ⟨(𝑧 +R 0R), (0R +R 𝑤)⟩ = ⟨𝑧, 𝑤⟩)
5651, 54, 55syl2an 287 . . . . 5 ((𝑧R𝑤R) → ⟨(𝑧 +R 0R), (0R +R 𝑤)⟩ = ⟨𝑧, 𝑤⟩)
5747, 50, 563eqtrrd 2155 . . . 4 ((𝑧R𝑤R) → ⟨𝑧, 𝑤⟩ = (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩)))
58 vex 2663 . . . . . 6 𝑧 ∈ V
59 opexg 4120 . . . . . 6 ((𝑧 ∈ V ∧ 0RR) → ⟨𝑧, 0R⟩ ∈ V)
6058, 10, 59mp2an 422 . . . . 5 𝑧, 0R⟩ ∈ V
61 vex 2663 . . . . . 6 𝑤 ∈ V
62 opexg 4120 . . . . . 6 ((𝑤 ∈ V ∧ 0RR) → ⟨𝑤, 0R⟩ ∈ V)
6361, 10, 62mp2an 422 . . . . 5 𝑤, 0R⟩ ∈ V
64 eleq1 2180 . . . . . . 7 (𝑥 = ⟨𝑧, 0R⟩ → (𝑥 ∈ ℝ ↔ ⟨𝑧, 0R⟩ ∈ ℝ))
65 eleq1 2180 . . . . . . 7 (𝑦 = ⟨𝑤, 0R⟩ → (𝑦 ∈ ℝ ↔ ⟨𝑤, 0R⟩ ∈ ℝ))
6664, 65bi2anan9 580 . . . . . 6 ((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) → ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ↔ (⟨𝑧, 0R⟩ ∈ ℝ ∧ ⟨𝑤, 0R⟩ ∈ ℝ)))
67 oveq1 5749 . . . . . . . 8 (𝑥 = ⟨𝑧, 0R⟩ → (𝑥 + (i · 𝑦)) = (⟨𝑧, 0R⟩ + (i · 𝑦)))
68 oveq2 5750 . . . . . . . . 9 (𝑦 = ⟨𝑤, 0R⟩ → (i · 𝑦) = (i · ⟨𝑤, 0R⟩))
6968oveq2d 5758 . . . . . . . 8 (𝑦 = ⟨𝑤, 0R⟩ → (⟨𝑧, 0R⟩ + (i · 𝑦)) = (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩)))
7067, 69sylan9eq 2170 . . . . . . 7 ((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) → (𝑥 + (i · 𝑦)) = (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩)))
7170eqeq2d 2129 . . . . . 6 ((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) → (⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦)) ↔ ⟨𝑧, 𝑤⟩ = (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩))))
7266, 71anbi12d 464 . . . . 5 ((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) → (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦))) ↔ ((⟨𝑧, 0R⟩ ∈ ℝ ∧ ⟨𝑤, 0R⟩ ∈ ℝ) ∧ ⟨𝑧, 𝑤⟩ = (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩)))))
7360, 63, 72spc2ev 2755 . . . 4 (((⟨𝑧, 0R⟩ ∈ ℝ ∧ ⟨𝑤, 0R⟩ ∈ ℝ) ∧ ⟨𝑧, 𝑤⟩ = (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩))) → ∃𝑥𝑦((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦))))
747, 57, 73syl2anc 408 . . 3 ((𝑧R𝑤R) → ∃𝑥𝑦((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦))))
75 r2ex 2432 . . 3 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦)) ↔ ∃𝑥𝑦((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦))))
7674, 75sylibr 133 . 2 ((𝑧R𝑤R) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦)))
771, 3, 76optocl 4585 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1316  wex 1453  wcel 1465  wrex 2394  Vcvv 2660  cop 3500  (class class class)co 5742  Rcnr 7073  0Rc0r 7074  1Rc1r 7075  -1Rcm1r 7076   +R cplr 7077   ·R cmr 7078  cc 7586  cr 7587  ici 7590   + caddc 7591   · cmul 7593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-eprel 4181  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-irdg 6235  df-1o 6281  df-2o 6282  df-oadd 6285  df-omul 6286  df-er 6397  df-ec 6399  df-qs 6403  df-ni 7080  df-pli 7081  df-mi 7082  df-lti 7083  df-plpq 7120  df-mpq 7121  df-enq 7123  df-nqqs 7124  df-plqqs 7125  df-mqqs 7126  df-1nqqs 7127  df-rq 7128  df-ltnqqs 7129  df-enq0 7200  df-nq0 7201  df-0nq0 7202  df-plq0 7203  df-mq0 7204  df-inp 7242  df-i1p 7243  df-iplp 7244  df-imp 7245  df-enr 7502  df-nr 7503  df-plr 7504  df-mr 7505  df-0r 7507  df-1r 7508  df-m1r 7509  df-c 7594  df-i 7597  df-r 7598  df-add 7599  df-mul 7600
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator