ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cos01gt0 GIF version

Theorem cos01gt0 12282
Description: The cosine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
cos01gt0 (𝐴 ∈ (0(,]1) → 0 < (cos‘𝐴))

Proof of Theorem cos01gt0
StepHypRef Expression
1 0xr 8201 . . . . . . . . . 10 0 ∈ ℝ*
2 1re 8153 . . . . . . . . . 10 1 ∈ ℝ
3 elioc2 10140 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1)))
41, 2, 3mp2an 426 . . . . . . . . 9 (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1))
54simp1bi 1036 . . . . . . . 8 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℝ)
65resqcld 10929 . . . . . . 7 (𝐴 ∈ (0(,]1) → (𝐴↑2) ∈ ℝ)
76recnd 8183 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴↑2) ∈ ℂ)
8 2cn 9189 . . . . . . 7 2 ∈ ℂ
9 3cn 9193 . . . . . . . 8 3 ∈ ℂ
10 3ap0 9214 . . . . . . . 8 3 # 0
119, 10pm3.2i 272 . . . . . . 7 (3 ∈ ℂ ∧ 3 # 0)
12 div12ap 8849 . . . . . . 7 ((2 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 # 0)) → (2 · ((𝐴↑2) / 3)) = ((𝐴↑2) · (2 / 3)))
138, 11, 12mp3an13 1362 . . . . . 6 ((𝐴↑2) ∈ ℂ → (2 · ((𝐴↑2) / 3)) = ((𝐴↑2) · (2 / 3)))
147, 13syl 14 . . . . 5 (𝐴 ∈ (0(,]1) → (2 · ((𝐴↑2) / 3)) = ((𝐴↑2) · (2 / 3)))
15 2z 9482 . . . . . . . . . 10 2 ∈ ℤ
16 expgt0 10802 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 2 ∈ ℤ ∧ 0 < 𝐴) → 0 < (𝐴↑2))
1715, 16mp3an2 1359 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (𝐴↑2))
18173adant3 1041 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1) → 0 < (𝐴↑2))
194, 18sylbi 121 . . . . . . 7 (𝐴 ∈ (0(,]1) → 0 < (𝐴↑2))
20 2lt3 9289 . . . . . . . . . 10 2 < 3
21 2re 9188 . . . . . . . . . . 11 2 ∈ ℝ
22 3re 9192 . . . . . . . . . . 11 3 ∈ ℝ
23 3pos 9212 . . . . . . . . . . 11 0 < 3
2421, 22, 22, 23ltdiv1ii 9084 . . . . . . . . . 10 (2 < 3 ↔ (2 / 3) < (3 / 3))
2520, 24mpbi 145 . . . . . . . . 9 (2 / 3) < (3 / 3)
269, 10dividapi 8900 . . . . . . . . 9 (3 / 3) = 1
2725, 26breqtri 4108 . . . . . . . 8 (2 / 3) < 1
2821, 22, 10redivclapi 8934 . . . . . . . . 9 (2 / 3) ∈ ℝ
29 ltmul2 9011 . . . . . . . . 9 (((2 / 3) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐴↑2) ∈ ℝ ∧ 0 < (𝐴↑2))) → ((2 / 3) < 1 ↔ ((𝐴↑2) · (2 / 3)) < ((𝐴↑2) · 1)))
3028, 2, 29mp3an12 1361 . . . . . . . 8 (((𝐴↑2) ∈ ℝ ∧ 0 < (𝐴↑2)) → ((2 / 3) < 1 ↔ ((𝐴↑2) · (2 / 3)) < ((𝐴↑2) · 1)))
3127, 30mpbii 148 . . . . . . 7 (((𝐴↑2) ∈ ℝ ∧ 0 < (𝐴↑2)) → ((𝐴↑2) · (2 / 3)) < ((𝐴↑2) · 1))
326, 19, 31syl2anc 411 . . . . . 6 (𝐴 ∈ (0(,]1) → ((𝐴↑2) · (2 / 3)) < ((𝐴↑2) · 1))
337mulridd 8171 . . . . . 6 (𝐴 ∈ (0(,]1) → ((𝐴↑2) · 1) = (𝐴↑2))
3432, 33breqtrd 4109 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴↑2) · (2 / 3)) < (𝐴↑2))
3514, 34eqbrtrd 4105 . . . 4 (𝐴 ∈ (0(,]1) → (2 · ((𝐴↑2) / 3)) < (𝐴↑2))
36 0re 8154 . . . . . . . . 9 0 ∈ ℝ
37 ltle 8242 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
3836, 37mpan 424 . . . . . . . 8 (𝐴 ∈ ℝ → (0 < 𝐴 → 0 ≤ 𝐴))
3938imdistani 445 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
40 le2sq2 10845 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (1 ∈ ℝ ∧ 𝐴 ≤ 1)) → (𝐴↑2) ≤ (1↑2))
412, 40mpanr1 437 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐴 ≤ 1) → (𝐴↑2) ≤ (1↑2))
4239, 41stoic3 1473 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1) → (𝐴↑2) ≤ (1↑2))
434, 42sylbi 121 . . . . 5 (𝐴 ∈ (0(,]1) → (𝐴↑2) ≤ (1↑2))
44 sq1 10863 . . . . 5 (1↑2) = 1
4543, 44breqtrdi 4124 . . . 4 (𝐴 ∈ (0(,]1) → (𝐴↑2) ≤ 1)
46 redivclap 8886 . . . . . . . 8 (((𝐴↑2) ∈ ℝ ∧ 3 ∈ ℝ ∧ 3 # 0) → ((𝐴↑2) / 3) ∈ ℝ)
4722, 10, 46mp3an23 1363 . . . . . . 7 ((𝐴↑2) ∈ ℝ → ((𝐴↑2) / 3) ∈ ℝ)
486, 47syl 14 . . . . . 6 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 3) ∈ ℝ)
49 remulcl 8135 . . . . . 6 ((2 ∈ ℝ ∧ ((𝐴↑2) / 3) ∈ ℝ) → (2 · ((𝐴↑2) / 3)) ∈ ℝ)
5021, 48, 49sylancr 414 . . . . 5 (𝐴 ∈ (0(,]1) → (2 · ((𝐴↑2) / 3)) ∈ ℝ)
51 ltletr 8244 . . . . . 6 (((2 · ((𝐴↑2) / 3)) ∈ ℝ ∧ (𝐴↑2) ∈ ℝ ∧ 1 ∈ ℝ) → (((2 · ((𝐴↑2) / 3)) < (𝐴↑2) ∧ (𝐴↑2) ≤ 1) → (2 · ((𝐴↑2) / 3)) < 1))
522, 51mp3an3 1360 . . . . 5 (((2 · ((𝐴↑2) / 3)) ∈ ℝ ∧ (𝐴↑2) ∈ ℝ) → (((2 · ((𝐴↑2) / 3)) < (𝐴↑2) ∧ (𝐴↑2) ≤ 1) → (2 · ((𝐴↑2) / 3)) < 1))
5350, 6, 52syl2anc 411 . . . 4 (𝐴 ∈ (0(,]1) → (((2 · ((𝐴↑2) / 3)) < (𝐴↑2) ∧ (𝐴↑2) ≤ 1) → (2 · ((𝐴↑2) / 3)) < 1))
5435, 45, 53mp2and 433 . . 3 (𝐴 ∈ (0(,]1) → (2 · ((𝐴↑2) / 3)) < 1)
55 posdif 8610 . . . 4 (((2 · ((𝐴↑2) / 3)) ∈ ℝ ∧ 1 ∈ ℝ) → ((2 · ((𝐴↑2) / 3)) < 1 ↔ 0 < (1 − (2 · ((𝐴↑2) / 3)))))
5650, 2, 55sylancl 413 . . 3 (𝐴 ∈ (0(,]1) → ((2 · ((𝐴↑2) / 3)) < 1 ↔ 0 < (1 − (2 · ((𝐴↑2) / 3)))))
5754, 56mpbid 147 . 2 (𝐴 ∈ (0(,]1) → 0 < (1 − (2 · ((𝐴↑2) / 3))))
58 cos01bnd 12277 . . 3 (𝐴 ∈ (0(,]1) → ((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) / 3))))
5958simpld 112 . 2 (𝐴 ∈ (0(,]1) → (1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴))
60 resubcl 8418 . . . 4 ((1 ∈ ℝ ∧ (2 · ((𝐴↑2) / 3)) ∈ ℝ) → (1 − (2 · ((𝐴↑2) / 3))) ∈ ℝ)
612, 50, 60sylancr 414 . . 3 (𝐴 ∈ (0(,]1) → (1 − (2 · ((𝐴↑2) / 3))) ∈ ℝ)
625recoscld 12243 . . 3 (𝐴 ∈ (0(,]1) → (cos‘𝐴) ∈ ℝ)
63 lttr 8228 . . 3 ((0 ∈ ℝ ∧ (1 − (2 · ((𝐴↑2) / 3))) ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → ((0 < (1 − (2 · ((𝐴↑2) / 3))) ∧ (1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴)) → 0 < (cos‘𝐴)))
6436, 61, 62, 63mp3an2i 1376 . 2 (𝐴 ∈ (0(,]1) → ((0 < (1 − (2 · ((𝐴↑2) / 3))) ∧ (1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴)) → 0 < (cos‘𝐴)))
6557, 59, 64mp2and 433 1 (𝐴 ∈ (0(,]1) → 0 < (cos‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200   class class class wbr 4083  cfv 5318  (class class class)co 6007  cc 8005  cr 8006  0cc0 8007  1c1 8008   · cmul 8012  *cxr 8188   < clt 8189  cle 8190  cmin 8325   # cap 8736   / cdiv 8827  2c2 9169  3c3 9170  cz 9454  (,]cioc 10093  cexp 10768  cosccos 12164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-oadd 6572  df-er 6688  df-en 6896  df-dom 6897  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-ioc 10097  df-ico 10098  df-fz 10213  df-fzo 10347  df-seqfrec 10678  df-exp 10769  df-fac 10956  df-ihash 11006  df-shft 11334  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-sumdc 11873  df-ef 12167  df-cos 12170
This theorem is referenced by:  sin02gt0  12283  sincos1sgn  12284  tangtx  15520
  Copyright terms: Public domain W3C validator