ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cos01gt0 GIF version

Theorem cos01gt0 11772
Description: The cosine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
cos01gt0 (𝐴 ∈ (0(,]1) → 0 < (cos‘𝐴))

Proof of Theorem cos01gt0
StepHypRef Expression
1 0xr 8006 . . . . . . . . . 10 0 ∈ ℝ*
2 1re 7958 . . . . . . . . . 10 1 ∈ ℝ
3 elioc2 9938 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1)))
41, 2, 3mp2an 426 . . . . . . . . 9 (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1))
54simp1bi 1012 . . . . . . . 8 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℝ)
65resqcld 10682 . . . . . . 7 (𝐴 ∈ (0(,]1) → (𝐴↑2) ∈ ℝ)
76recnd 7988 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴↑2) ∈ ℂ)
8 2cn 8992 . . . . . . 7 2 ∈ ℂ
9 3cn 8996 . . . . . . . 8 3 ∈ ℂ
10 3ap0 9017 . . . . . . . 8 3 # 0
119, 10pm3.2i 272 . . . . . . 7 (3 ∈ ℂ ∧ 3 # 0)
12 div12ap 8653 . . . . . . 7 ((2 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 # 0)) → (2 · ((𝐴↑2) / 3)) = ((𝐴↑2) · (2 / 3)))
138, 11, 12mp3an13 1328 . . . . . 6 ((𝐴↑2) ∈ ℂ → (2 · ((𝐴↑2) / 3)) = ((𝐴↑2) · (2 / 3)))
147, 13syl 14 . . . . 5 (𝐴 ∈ (0(,]1) → (2 · ((𝐴↑2) / 3)) = ((𝐴↑2) · (2 / 3)))
15 2z 9283 . . . . . . . . . 10 2 ∈ ℤ
16 expgt0 10555 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 2 ∈ ℤ ∧ 0 < 𝐴) → 0 < (𝐴↑2))
1715, 16mp3an2 1325 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (𝐴↑2))
18173adant3 1017 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1) → 0 < (𝐴↑2))
194, 18sylbi 121 . . . . . . 7 (𝐴 ∈ (0(,]1) → 0 < (𝐴↑2))
20 2lt3 9091 . . . . . . . . . 10 2 < 3
21 2re 8991 . . . . . . . . . . 11 2 ∈ ℝ
22 3re 8995 . . . . . . . . . . 11 3 ∈ ℝ
23 3pos 9015 . . . . . . . . . . 11 0 < 3
2421, 22, 22, 23ltdiv1ii 8888 . . . . . . . . . 10 (2 < 3 ↔ (2 / 3) < (3 / 3))
2520, 24mpbi 145 . . . . . . . . 9 (2 / 3) < (3 / 3)
269, 10dividapi 8704 . . . . . . . . 9 (3 / 3) = 1
2725, 26breqtri 4030 . . . . . . . 8 (2 / 3) < 1
2821, 22, 10redivclapi 8738 . . . . . . . . 9 (2 / 3) ∈ ℝ
29 ltmul2 8815 . . . . . . . . 9 (((2 / 3) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐴↑2) ∈ ℝ ∧ 0 < (𝐴↑2))) → ((2 / 3) < 1 ↔ ((𝐴↑2) · (2 / 3)) < ((𝐴↑2) · 1)))
3028, 2, 29mp3an12 1327 . . . . . . . 8 (((𝐴↑2) ∈ ℝ ∧ 0 < (𝐴↑2)) → ((2 / 3) < 1 ↔ ((𝐴↑2) · (2 / 3)) < ((𝐴↑2) · 1)))
3127, 30mpbii 148 . . . . . . 7 (((𝐴↑2) ∈ ℝ ∧ 0 < (𝐴↑2)) → ((𝐴↑2) · (2 / 3)) < ((𝐴↑2) · 1))
326, 19, 31syl2anc 411 . . . . . 6 (𝐴 ∈ (0(,]1) → ((𝐴↑2) · (2 / 3)) < ((𝐴↑2) · 1))
337mulridd 7976 . . . . . 6 (𝐴 ∈ (0(,]1) → ((𝐴↑2) · 1) = (𝐴↑2))
3432, 33breqtrd 4031 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴↑2) · (2 / 3)) < (𝐴↑2))
3514, 34eqbrtrd 4027 . . . 4 (𝐴 ∈ (0(,]1) → (2 · ((𝐴↑2) / 3)) < (𝐴↑2))
36 0re 7959 . . . . . . . . 9 0 ∈ ℝ
37 ltle 8047 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
3836, 37mpan 424 . . . . . . . 8 (𝐴 ∈ ℝ → (0 < 𝐴 → 0 ≤ 𝐴))
3938imdistani 445 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
40 le2sq2 10598 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (1 ∈ ℝ ∧ 𝐴 ≤ 1)) → (𝐴↑2) ≤ (1↑2))
412, 40mpanr1 437 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐴 ≤ 1) → (𝐴↑2) ≤ (1↑2))
4239, 41stoic3 1431 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1) → (𝐴↑2) ≤ (1↑2))
434, 42sylbi 121 . . . . 5 (𝐴 ∈ (0(,]1) → (𝐴↑2) ≤ (1↑2))
44 sq1 10616 . . . . 5 (1↑2) = 1
4543, 44breqtrdi 4046 . . . 4 (𝐴 ∈ (0(,]1) → (𝐴↑2) ≤ 1)
46 redivclap 8690 . . . . . . . 8 (((𝐴↑2) ∈ ℝ ∧ 3 ∈ ℝ ∧ 3 # 0) → ((𝐴↑2) / 3) ∈ ℝ)
4722, 10, 46mp3an23 1329 . . . . . . 7 ((𝐴↑2) ∈ ℝ → ((𝐴↑2) / 3) ∈ ℝ)
486, 47syl 14 . . . . . 6 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 3) ∈ ℝ)
49 remulcl 7941 . . . . . 6 ((2 ∈ ℝ ∧ ((𝐴↑2) / 3) ∈ ℝ) → (2 · ((𝐴↑2) / 3)) ∈ ℝ)
5021, 48, 49sylancr 414 . . . . 5 (𝐴 ∈ (0(,]1) → (2 · ((𝐴↑2) / 3)) ∈ ℝ)
51 ltletr 8049 . . . . . 6 (((2 · ((𝐴↑2) / 3)) ∈ ℝ ∧ (𝐴↑2) ∈ ℝ ∧ 1 ∈ ℝ) → (((2 · ((𝐴↑2) / 3)) < (𝐴↑2) ∧ (𝐴↑2) ≤ 1) → (2 · ((𝐴↑2) / 3)) < 1))
522, 51mp3an3 1326 . . . . 5 (((2 · ((𝐴↑2) / 3)) ∈ ℝ ∧ (𝐴↑2) ∈ ℝ) → (((2 · ((𝐴↑2) / 3)) < (𝐴↑2) ∧ (𝐴↑2) ≤ 1) → (2 · ((𝐴↑2) / 3)) < 1))
5350, 6, 52syl2anc 411 . . . 4 (𝐴 ∈ (0(,]1) → (((2 · ((𝐴↑2) / 3)) < (𝐴↑2) ∧ (𝐴↑2) ≤ 1) → (2 · ((𝐴↑2) / 3)) < 1))
5435, 45, 53mp2and 433 . . 3 (𝐴 ∈ (0(,]1) → (2 · ((𝐴↑2) / 3)) < 1)
55 posdif 8414 . . . 4 (((2 · ((𝐴↑2) / 3)) ∈ ℝ ∧ 1 ∈ ℝ) → ((2 · ((𝐴↑2) / 3)) < 1 ↔ 0 < (1 − (2 · ((𝐴↑2) / 3)))))
5650, 2, 55sylancl 413 . . 3 (𝐴 ∈ (0(,]1) → ((2 · ((𝐴↑2) / 3)) < 1 ↔ 0 < (1 − (2 · ((𝐴↑2) / 3)))))
5754, 56mpbid 147 . 2 (𝐴 ∈ (0(,]1) → 0 < (1 − (2 · ((𝐴↑2) / 3))))
58 cos01bnd 11768 . . 3 (𝐴 ∈ (0(,]1) → ((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) / 3))))
5958simpld 112 . 2 (𝐴 ∈ (0(,]1) → (1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴))
60 resubcl 8223 . . . 4 ((1 ∈ ℝ ∧ (2 · ((𝐴↑2) / 3)) ∈ ℝ) → (1 − (2 · ((𝐴↑2) / 3))) ∈ ℝ)
612, 50, 60sylancr 414 . . 3 (𝐴 ∈ (0(,]1) → (1 − (2 · ((𝐴↑2) / 3))) ∈ ℝ)
625recoscld 11734 . . 3 (𝐴 ∈ (0(,]1) → (cos‘𝐴) ∈ ℝ)
63 lttr 8033 . . 3 ((0 ∈ ℝ ∧ (1 − (2 · ((𝐴↑2) / 3))) ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → ((0 < (1 − (2 · ((𝐴↑2) / 3))) ∧ (1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴)) → 0 < (cos‘𝐴)))
6436, 61, 62, 63mp3an2i 1342 . 2 (𝐴 ∈ (0(,]1) → ((0 < (1 − (2 · ((𝐴↑2) / 3))) ∧ (1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴)) → 0 < (cos‘𝐴)))
6557, 59, 64mp2and 433 1 (𝐴 ∈ (0(,]1) → 0 < (cos‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148   class class class wbr 4005  cfv 5218  (class class class)co 5877  cc 7811  cr 7812  0cc0 7813  1c1 7814   · cmul 7818  *cxr 7993   < clt 7994  cle 7995  cmin 8130   # cap 8540   / cdiv 8631  2c2 8972  3c3 8973  cz 9255  (,]cioc 9891  cexp 10521  cosccos 11655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-frec 6394  df-1o 6419  df-oadd 6423  df-er 6537  df-en 6743  df-dom 6744  df-fin 6745  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-5 8983  df-6 8984  df-7 8985  df-8 8986  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-ioc 9895  df-ico 9896  df-fz 10011  df-fzo 10145  df-seqfrec 10448  df-exp 10522  df-fac 10708  df-ihash 10758  df-shft 10826  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-clim 11289  df-sumdc 11364  df-ef 11658  df-cos 11661
This theorem is referenced by:  sin02gt0  11773  sincos1sgn  11774  tangtx  14344
  Copyright terms: Public domain W3C validator