Proof of Theorem cos01gt0
| Step | Hyp | Ref
| Expression |
| 1 | | 0xr 8073 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ* |
| 2 | | 1re 8025 |
. . . . . . . . . 10
⊢ 1 ∈
ℝ |
| 3 | | elioc2 10011 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ) → (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1))) |
| 4 | 1, 2, 3 | mp2an 426 |
. . . . . . . . 9
⊢ (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 ≤ 1)) |
| 5 | 4 | simp1bi 1014 |
. . . . . . . 8
⊢ (𝐴 ∈ (0(,]1) → 𝐴 ∈
ℝ) |
| 6 | 5 | resqcld 10791 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → (𝐴↑2) ∈
ℝ) |
| 7 | 6 | recnd 8055 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → (𝐴↑2) ∈
ℂ) |
| 8 | | 2cn 9061 |
. . . . . . 7
⊢ 2 ∈
ℂ |
| 9 | | 3cn 9065 |
. . . . . . . 8
⊢ 3 ∈
ℂ |
| 10 | | 3ap0 9086 |
. . . . . . . 8
⊢ 3 #
0 |
| 11 | 9, 10 | pm3.2i 272 |
. . . . . . 7
⊢ (3 ∈
ℂ ∧ 3 # 0) |
| 12 | | div12ap 8721 |
. . . . . . 7
⊢ ((2
∈ ℂ ∧ (𝐴↑2) ∈ ℂ ∧ (3 ∈
ℂ ∧ 3 # 0)) → (2 · ((𝐴↑2) / 3)) = ((𝐴↑2) · (2 / 3))) |
| 13 | 8, 11, 12 | mp3an13 1339 |
. . . . . 6
⊢ ((𝐴↑2) ∈ ℂ →
(2 · ((𝐴↑2) /
3)) = ((𝐴↑2) ·
(2 / 3))) |
| 14 | 7, 13 | syl 14 |
. . . . 5
⊢ (𝐴 ∈ (0(,]1) → (2
· ((𝐴↑2) / 3))
= ((𝐴↑2) · (2 /
3))) |
| 15 | | 2z 9354 |
. . . . . . . . . 10
⊢ 2 ∈
ℤ |
| 16 | | expgt0 10664 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 2 ∈
ℤ ∧ 0 < 𝐴)
→ 0 < (𝐴↑2)) |
| 17 | 15, 16 | mp3an2 1336 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 0 < (𝐴↑2)) |
| 18 | 17 | 3adant3 1019 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 ≤ 1) → 0 < (𝐴↑2)) |
| 19 | 4, 18 | sylbi 121 |
. . . . . . 7
⊢ (𝐴 ∈ (0(,]1) → 0 <
(𝐴↑2)) |
| 20 | | 2lt3 9161 |
. . . . . . . . . 10
⊢ 2 <
3 |
| 21 | | 2re 9060 |
. . . . . . . . . . 11
⊢ 2 ∈
ℝ |
| 22 | | 3re 9064 |
. . . . . . . . . . 11
⊢ 3 ∈
ℝ |
| 23 | | 3pos 9084 |
. . . . . . . . . . 11
⊢ 0 <
3 |
| 24 | 21, 22, 22, 23 | ltdiv1ii 8956 |
. . . . . . . . . 10
⊢ (2 < 3
↔ (2 / 3) < (3 / 3)) |
| 25 | 20, 24 | mpbi 145 |
. . . . . . . . 9
⊢ (2 / 3)
< (3 / 3) |
| 26 | 9, 10 | dividapi 8772 |
. . . . . . . . 9
⊢ (3 / 3) =
1 |
| 27 | 25, 26 | breqtri 4058 |
. . . . . . . 8
⊢ (2 / 3)
< 1 |
| 28 | 21, 22, 10 | redivclapi 8806 |
. . . . . . . . 9
⊢ (2 / 3)
∈ ℝ |
| 29 | | ltmul2 8883 |
. . . . . . . . 9
⊢ (((2 / 3)
∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐴↑2) ∈ ℝ ∧ 0 < (𝐴↑2))) → ((2 / 3) <
1 ↔ ((𝐴↑2)
· (2 / 3)) < ((𝐴↑2) · 1))) |
| 30 | 28, 2, 29 | mp3an12 1338 |
. . . . . . . 8
⊢ (((𝐴↑2) ∈ ℝ ∧ 0
< (𝐴↑2)) → ((2
/ 3) < 1 ↔ ((𝐴↑2) · (2 / 3)) < ((𝐴↑2) ·
1))) |
| 31 | 27, 30 | mpbii 148 |
. . . . . . 7
⊢ (((𝐴↑2) ∈ ℝ ∧ 0
< (𝐴↑2)) →
((𝐴↑2) · (2 /
3)) < ((𝐴↑2)
· 1)) |
| 32 | 6, 19, 31 | syl2anc 411 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑2) · (2 / 3)) <
((𝐴↑2) ·
1)) |
| 33 | 7 | mulridd 8043 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑2) · 1) = (𝐴↑2)) |
| 34 | 32, 33 | breqtrd 4059 |
. . . . 5
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑2) · (2 / 3)) <
(𝐴↑2)) |
| 35 | 14, 34 | eqbrtrd 4055 |
. . . 4
⊢ (𝐴 ∈ (0(,]1) → (2
· ((𝐴↑2) / 3))
< (𝐴↑2)) |
| 36 | | 0re 8026 |
. . . . . . . . 9
⊢ 0 ∈
ℝ |
| 37 | | ltle 8114 |
. . . . . . . . 9
⊢ ((0
∈ ℝ ∧ 𝐴
∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴)) |
| 38 | 36, 37 | mpan 424 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ → (0 <
𝐴 → 0 ≤ 𝐴)) |
| 39 | 38 | imdistani 445 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (𝐴 ∈ ℝ ∧ 0 ≤
𝐴)) |
| 40 | | le2sq2 10707 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (1 ∈ ℝ
∧ 𝐴 ≤ 1)) →
(𝐴↑2) ≤
(1↑2)) |
| 41 | 2, 40 | mpanr1 437 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ 𝐴 ≤ 1) → (𝐴↑2) ≤ (1↑2)) |
| 42 | 39, 41 | stoic3 1442 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 ≤ 1) → (𝐴↑2) ≤ (1↑2)) |
| 43 | 4, 42 | sylbi 121 |
. . . . 5
⊢ (𝐴 ∈ (0(,]1) → (𝐴↑2) ≤
(1↑2)) |
| 44 | | sq1 10725 |
. . . . 5
⊢
(1↑2) = 1 |
| 45 | 43, 44 | breqtrdi 4074 |
. . . 4
⊢ (𝐴 ∈ (0(,]1) → (𝐴↑2) ≤
1) |
| 46 | | redivclap 8758 |
. . . . . . . 8
⊢ (((𝐴↑2) ∈ ℝ ∧ 3
∈ ℝ ∧ 3 # 0) → ((𝐴↑2) / 3) ∈
ℝ) |
| 47 | 22, 10, 46 | mp3an23 1340 |
. . . . . . 7
⊢ ((𝐴↑2) ∈ ℝ →
((𝐴↑2) / 3) ∈
ℝ) |
| 48 | 6, 47 | syl 14 |
. . . . . 6
⊢ (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 3) ∈
ℝ) |
| 49 | | remulcl 8007 |
. . . . . 6
⊢ ((2
∈ ℝ ∧ ((𝐴↑2) / 3) ∈ ℝ) → (2
· ((𝐴↑2) / 3))
∈ ℝ) |
| 50 | 21, 48, 49 | sylancr 414 |
. . . . 5
⊢ (𝐴 ∈ (0(,]1) → (2
· ((𝐴↑2) / 3))
∈ ℝ) |
| 51 | | ltletr 8116 |
. . . . . 6
⊢ (((2
· ((𝐴↑2) / 3))
∈ ℝ ∧ (𝐴↑2) ∈ ℝ ∧ 1 ∈
ℝ) → (((2 · ((𝐴↑2) / 3)) < (𝐴↑2) ∧ (𝐴↑2) ≤ 1) → (2 · ((𝐴↑2) / 3)) <
1)) |
| 52 | 2, 51 | mp3an3 1337 |
. . . . 5
⊢ (((2
· ((𝐴↑2) / 3))
∈ ℝ ∧ (𝐴↑2) ∈ ℝ) → (((2
· ((𝐴↑2) / 3))
< (𝐴↑2) ∧
(𝐴↑2) ≤ 1) →
(2 · ((𝐴↑2) /
3)) < 1)) |
| 53 | 50, 6, 52 | syl2anc 411 |
. . . 4
⊢ (𝐴 ∈ (0(,]1) → (((2
· ((𝐴↑2) / 3))
< (𝐴↑2) ∧
(𝐴↑2) ≤ 1) →
(2 · ((𝐴↑2) /
3)) < 1)) |
| 54 | 35, 45, 53 | mp2and 433 |
. . 3
⊢ (𝐴 ∈ (0(,]1) → (2
· ((𝐴↑2) / 3))
< 1) |
| 55 | | posdif 8482 |
. . . 4
⊢ (((2
· ((𝐴↑2) / 3))
∈ ℝ ∧ 1 ∈ ℝ) → ((2 · ((𝐴↑2) / 3)) < 1 ↔ 0 < (1
− (2 · ((𝐴↑2) / 3))))) |
| 56 | 50, 2, 55 | sylancl 413 |
. . 3
⊢ (𝐴 ∈ (0(,]1) → ((2
· ((𝐴↑2) / 3))
< 1 ↔ 0 < (1 − (2 · ((𝐴↑2) / 3))))) |
| 57 | 54, 56 | mpbid 147 |
. 2
⊢ (𝐴 ∈ (0(,]1) → 0 < (1
− (2 · ((𝐴↑2) / 3)))) |
| 58 | | cos01bnd 11923 |
. . 3
⊢ (𝐴 ∈ (0(,]1) → ((1
− (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) /
3)))) |
| 59 | 58 | simpld 112 |
. 2
⊢ (𝐴 ∈ (0(,]1) → (1
− (2 · ((𝐴↑2) / 3))) < (cos‘𝐴)) |
| 60 | | resubcl 8290 |
. . . 4
⊢ ((1
∈ ℝ ∧ (2 · ((𝐴↑2) / 3)) ∈ ℝ) → (1
− (2 · ((𝐴↑2) / 3))) ∈
ℝ) |
| 61 | 2, 50, 60 | sylancr 414 |
. . 3
⊢ (𝐴 ∈ (0(,]1) → (1
− (2 · ((𝐴↑2) / 3))) ∈
ℝ) |
| 62 | 5 | recoscld 11889 |
. . 3
⊢ (𝐴 ∈ (0(,]1) →
(cos‘𝐴) ∈
ℝ) |
| 63 | | lttr 8100 |
. . 3
⊢ ((0
∈ ℝ ∧ (1 − (2 · ((𝐴↑2) / 3))) ∈ ℝ ∧
(cos‘𝐴) ∈
ℝ) → ((0 < (1 − (2 · ((𝐴↑2) / 3))) ∧ (1 − (2 ·
((𝐴↑2) / 3))) <
(cos‘𝐴)) → 0
< (cos‘𝐴))) |
| 64 | 36, 61, 62, 63 | mp3an2i 1353 |
. 2
⊢ (𝐴 ∈ (0(,]1) → ((0 <
(1 − (2 · ((𝐴↑2) / 3))) ∧ (1 − (2 ·
((𝐴↑2) / 3))) <
(cos‘𝐴)) → 0
< (cos‘𝐴))) |
| 65 | 57, 59, 64 | mp2and 433 |
1
⊢ (𝐴 ∈ (0(,]1) → 0 <
(cos‘𝐴)) |