Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpanr12 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 24-Jul-2009.) |
Ref | Expression |
---|---|
mpanr12.1 | ⊢ 𝜓 |
mpanr12.2 | ⊢ 𝜒 |
mpanr12.3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
mpanr12 | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanr12.2 | . 2 ⊢ 𝜒 | |
2 | mpanr12.1 | . . 3 ⊢ 𝜓 | |
3 | mpanr12.3 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
4 | 2, 3 | mpanr1 434 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
5 | 1, 4 | mpan2 422 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: cnvoprab 6171 2dom 6739 phplem4 6789 fiintim 6862 mulidnq 7288 nq0m0r 7355 nq0a0 7356 addpinq1 7363 0idsr 7666 1idsr 7667 00sr 7668 addresr 7736 mulresr 7737 pitonnlem2 7746 ax0id 7777 recexaplem2 8505 reclt1 8746 crap0 8808 nominpos 9049 expnass 10502 crim 10735 sqrt00 10917 mulcn2 11186 sin02gt0 11637 opoe 11759 txswaphmeo 12660 sinq34lt0t 13091 cosordlem 13109 |
Copyright terms: Public domain | W3C validator |