![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpanr12 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 24-Jul-2009.) |
Ref | Expression |
---|---|
mpanr12.1 | ⊢ 𝜓 |
mpanr12.2 | ⊢ 𝜒 |
mpanr12.3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
mpanr12 | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanr12.2 | . 2 ⊢ 𝜒 | |
2 | mpanr12.1 | . . 3 ⊢ 𝜓 | |
3 | mpanr12.3 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
4 | 2, 3 | mpanr1 437 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
5 | 1, 4 | mpan2 425 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem is referenced by: cnvoprab 6287 2dom 6859 phplem4 6911 fiintim 6985 mulidnq 7449 nq0m0r 7516 nq0a0 7517 addpinq1 7524 0idsr 7827 1idsr 7828 00sr 7829 addresr 7897 mulresr 7898 pitonnlem2 7907 ax0id 7938 recexaplem2 8671 reclt1 8915 crap0 8977 nominpos 9220 expnass 10716 crim 11002 sqrt00 11184 mulcn2 11455 sin02gt0 11907 opoe 12036 oddprm 12397 pythagtriplem3 12405 pc1 12443 txswaphmeo 14489 sinq34lt0t 14966 cosordlem 14984 lgsne0 15154 lgsdinn0 15164 |
Copyright terms: Public domain | W3C validator |