| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpanr12 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 24-Jul-2009.) |
| Ref | Expression |
|---|---|
| mpanr12.1 | ⊢ 𝜓 |
| mpanr12.2 | ⊢ 𝜒 |
| mpanr12.3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanr12 | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanr12.2 | . 2 ⊢ 𝜒 | |
| 2 | mpanr12.1 | . . 3 ⊢ 𝜓 | |
| 3 | mpanr12.3 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 4 | 2, 3 | mpanr1 437 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | mpan2 425 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: cnvoprab 6370 2dom 6948 phplem4 7004 fiintim 7081 mulidnq 7564 nq0m0r 7631 nq0a0 7632 addpinq1 7639 0idsr 7942 1idsr 7943 00sr 7944 addresr 8012 mulresr 8013 pitonnlem2 8022 ax0id 8053 recexaplem2 8787 reclt1 9031 crap0 9093 nominpos 9337 expnass 10854 crim 11355 sqrt00 11537 mulcn2 11809 sin02gt0 12261 opoe 12392 oddprm 12768 pythagtriplem3 12776 pc1 12814 txswaphmeo 14980 sinq34lt0t 15490 cosordlem 15508 lgsne0 15702 lgsdinn0 15712 |
| Copyright terms: Public domain | W3C validator |