![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpanr12 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 24-Jul-2009.) |
Ref | Expression |
---|---|
mpanr12.1 | ⊢ 𝜓 |
mpanr12.2 | ⊢ 𝜒 |
mpanr12.3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
mpanr12 | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanr12.2 | . 2 ⊢ 𝜒 | |
2 | mpanr12.1 | . . 3 ⊢ 𝜓 | |
3 | mpanr12.3 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
4 | 2, 3 | mpanr1 429 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
5 | 1, 4 | mpan2 417 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: cnvoprab 6013 2dom 6576 phplem4 6625 fiintim 6693 mulidnq 7009 nq0m0r 7076 nq0a0 7077 addpinq1 7084 0idsr 7374 1idsr 7375 00sr 7376 addresr 7435 mulresr 7436 pitonnlem2 7445 ax0id 7474 recexaplem2 8182 reclt1 8418 crap0 8479 nominpos 8714 expnass 10121 crim 10353 sqrt00 10534 mulcn2 10762 sin02gt0 11115 opoe 11234 |
Copyright terms: Public domain | W3C validator |