| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpanr12 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 24-Jul-2009.) |
| Ref | Expression |
|---|---|
| mpanr12.1 | ⊢ 𝜓 |
| mpanr12.2 | ⊢ 𝜒 |
| mpanr12.3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanr12 | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanr12.2 | . 2 ⊢ 𝜒 | |
| 2 | mpanr12.1 | . . 3 ⊢ 𝜓 | |
| 3 | mpanr12.3 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 4 | 2, 3 | mpanr1 437 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | mpan2 425 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: cnvoprab 6386 2dom 6966 phplem4 7024 fiintim 7101 mulidnq 7584 nq0m0r 7651 nq0a0 7652 addpinq1 7659 0idsr 7962 1idsr 7963 00sr 7964 addresr 8032 mulresr 8033 pitonnlem2 8042 ax0id 8073 recexaplem2 8807 reclt1 9051 crap0 9113 nominpos 9357 expnass 10875 crim 11377 sqrt00 11559 mulcn2 11831 sin02gt0 12283 opoe 12414 oddprm 12790 pythagtriplem3 12798 pc1 12836 txswaphmeo 15003 sinq34lt0t 15513 cosordlem 15531 lgsne0 15725 lgsdinn0 15735 3dom 16381 |
| Copyright terms: Public domain | W3C validator |