![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpanr12 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 24-Jul-2009.) |
Ref | Expression |
---|---|
mpanr12.1 | ⊢ 𝜓 |
mpanr12.2 | ⊢ 𝜒 |
mpanr12.3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
mpanr12 | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanr12.2 | . 2 ⊢ 𝜒 | |
2 | mpanr12.1 | . . 3 ⊢ 𝜓 | |
3 | mpanr12.3 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
4 | 2, 3 | mpanr1 437 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
5 | 1, 4 | mpan2 425 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem is referenced by: cnvoprab 6234 2dom 6804 phplem4 6854 fiintim 6927 mulidnq 7387 nq0m0r 7454 nq0a0 7455 addpinq1 7462 0idsr 7765 1idsr 7766 00sr 7767 addresr 7835 mulresr 7836 pitonnlem2 7845 ax0id 7876 recexaplem2 8608 reclt1 8852 crap0 8914 nominpos 9155 expnass 10625 crim 10866 sqrt00 11048 mulcn2 11319 sin02gt0 11770 opoe 11899 oddprm 12258 pythagtriplem3 12266 pc1 12304 txswaphmeo 13791 sinq34lt0t 14222 cosordlem 14240 lgsne0 14409 lgsdinn0 14419 |
Copyright terms: Public domain | W3C validator |