| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpanr12 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 24-Jul-2009.) |
| Ref | Expression |
|---|---|
| mpanr12.1 | ⊢ 𝜓 |
| mpanr12.2 | ⊢ 𝜒 |
| mpanr12.3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanr12 | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanr12.2 | . 2 ⊢ 𝜒 | |
| 2 | mpanr12.1 | . . 3 ⊢ 𝜓 | |
| 3 | mpanr12.3 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 4 | 2, 3 | mpanr1 437 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | mpan2 425 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: cnvoprab 6332 2dom 6910 phplem4 6966 fiintim 7042 mulidnq 7517 nq0m0r 7584 nq0a0 7585 addpinq1 7592 0idsr 7895 1idsr 7896 00sr 7897 addresr 7965 mulresr 7966 pitonnlem2 7975 ax0id 8006 recexaplem2 8740 reclt1 8984 crap0 9046 nominpos 9290 expnass 10807 crim 11239 sqrt00 11421 mulcn2 11693 sin02gt0 12145 opoe 12276 oddprm 12652 pythagtriplem3 12660 pc1 12698 txswaphmeo 14863 sinq34lt0t 15373 cosordlem 15391 lgsne0 15585 lgsdinn0 15595 |
| Copyright terms: Public domain | W3C validator |