| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpanr12 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 24-Jul-2009.) |
| Ref | Expression |
|---|---|
| mpanr12.1 | ⊢ 𝜓 |
| mpanr12.2 | ⊢ 𝜒 |
| mpanr12.3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanr12 | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanr12.2 | . 2 ⊢ 𝜒 | |
| 2 | mpanr12.1 | . . 3 ⊢ 𝜓 | |
| 3 | mpanr12.3 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 4 | 2, 3 | mpanr1 437 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | mpan2 425 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: cnvoprab 6292 2dom 6864 phplem4 6916 fiintim 6992 mulidnq 7456 nq0m0r 7523 nq0a0 7524 addpinq1 7531 0idsr 7834 1idsr 7835 00sr 7836 addresr 7904 mulresr 7905 pitonnlem2 7914 ax0id 7945 recexaplem2 8679 reclt1 8923 crap0 8985 nominpos 9229 expnass 10737 crim 11023 sqrt00 11205 mulcn2 11477 sin02gt0 11929 opoe 12060 oddprm 12428 pythagtriplem3 12436 pc1 12474 txswaphmeo 14557 sinq34lt0t 15067 cosordlem 15085 lgsne0 15279 lgsdinn0 15289 |
| Copyright terms: Public domain | W3C validator |