| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpgbi | GIF version | ||
| Description: Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.) |
| Ref | Expression |
|---|---|
| mpgbi.1 | ⊢ (∀𝑥𝜑 ↔ 𝜓) |
| mpgbi.2 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| mpgbi | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpgbi.2 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | ax-gen 1463 | . 2 ⊢ ∀𝑥𝜑 |
| 3 | mpgbi.1 | . 2 ⊢ (∀𝑥𝜑 ↔ 𝜓) | |
| 4 | 2, 3 | mpbi 145 | 1 ⊢ 𝜓 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1463 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: nex 1514 exlimih 1607 exan 1707 abbii 2312 bj-ex 15408 |
| Copyright terms: Public domain | W3C validator |