![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > abbii | GIF version |
Description: Equivalent wff's yield equal class abstractions (inference form). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
abbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
abbii | ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi 2307 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) | |
2 | abbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | mpgbi 1463 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 {cab 2179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 |
This theorem is referenced by: rabswap 2673 rabbiia 2745 rabab 2781 csb2 3082 cbvcsbw 3084 cbvcsb 3085 csbid 3088 csbco 3090 csbcow 3091 cbvreucsf 3145 unrab 3430 inrab 3431 inrab2 3432 difrab 3433 rabun2 3438 dfnul3 3449 rab0 3475 tprot 3711 pw0 3765 dfuni2 3837 unipr 3849 dfint2 3872 int0 3884 dfiunv2 3948 cbviun 3949 cbviin 3950 iunrab 3960 iunid 3968 viin 3972 cbvopab 4100 cbvopab1 4102 cbvopab2 4103 cbvopab1s 4104 cbvopab2v 4106 unopab 4108 iunopab 4312 abnex 4478 uniuni 4482 ruv 4582 rabxp 4696 dfdm3 4849 dfrn2 4850 dfrn3 4851 dfdm4 4854 dfdmf 4855 dmun 4869 dmopab 4873 dmopabss 4874 dmopab3 4875 dfrnf 4903 rnopab 4909 rnmpt 4910 dfima2 5007 dfima3 5008 imadmrn 5015 imai 5021 args 5034 mptpreima 5159 dfiota2 5216 cbviota 5220 sb8iota 5222 dffv4g 5551 dfimafn2 5606 fnasrn 5736 fnasrng 5738 elabrex 5800 elabrexg 5801 abrexco 5802 dfoprab2 5965 cbvoprab2 5991 dmoprab 5999 rnoprab 6001 rnoprab2 6002 fnrnov 6064 abrexex2g 6172 abrexex2 6176 abexssex 6177 abexex 6178 oprabrexex2 6182 dfopab2 6242 cnvoprab 6287 tfr1onlemaccex 6401 tfrcllemaccex 6414 tfrcldm 6416 frec0g 6450 frecsuc 6460 snec 6650 pmex 6707 dfixp 6754 cbvixp 6769 caucvgprprlemmu 7755 caucvgsr 7862 pitonnlem1 7905 mertenslem2 11679 4sqlemafi 12533 dfrhm2 13650 toponsspwpwg 14190 tgval2 14219 if0ab 15297 bdcuni 15368 bj-dfom 15425 |
Copyright terms: Public domain | W3C validator |