| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abbii | GIF version | ||
| Description: Equivalent wff's yield equal class abstractions (inference form). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| abbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| abbii | ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abbi 2318 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) | |
| 2 | abbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | mpgbi 1474 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1372 {cab 2190 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 |
| This theorem is referenced by: rabswap 2684 rabbiia 2756 rabab 2792 csb2 3094 cbvcsbw 3096 cbvcsb 3097 csbid 3100 csbco 3102 csbcow 3103 cbvreucsf 3157 unrab 3443 inrab 3444 inrab2 3445 difrab 3446 rabun2 3451 dfnul3 3462 rab0 3488 tprot 3725 pw0 3779 dfuni2 3851 unipr 3863 dfint2 3886 int0 3898 dfiunv2 3962 cbviun 3963 cbviin 3964 iunrab 3974 iunid 3982 viin 3986 cbvopab 4114 cbvopab1 4116 cbvopab2 4117 cbvopab1s 4118 cbvopab2v 4120 unopab 4122 iunopab 4327 abnex 4493 uniuni 4497 ruv 4597 rabxp 4711 dfdm3 4864 dfrn2 4865 dfrn3 4866 dfdm4 4869 dfdmf 4870 dmun 4884 dmopab 4888 dmopabss 4889 dmopab3 4890 dfrnf 4918 rnopab 4924 rnmpt 4925 dfima2 5023 dfima3 5024 imadmrn 5031 imai 5037 args 5050 mptpreima 5175 dfiota2 5232 cbviota 5236 sb8iota 5238 dffv4g 5572 dfimafn2 5627 fnasrn 5757 fnasrng 5759 elabrex 5825 elabrexg 5826 abrexco 5827 dfoprab2 5991 cbvoprab2 6017 dmoprab 6025 rnoprab 6027 rnoprab2 6028 fnrnov 6091 abrexex2g 6204 abrexex2 6208 abexssex 6209 abexex 6210 oprabrexex2 6214 dfopab2 6274 cnvoprab 6319 tfr1onlemaccex 6433 tfrcllemaccex 6446 tfrcldm 6448 frec0g 6482 frecsuc 6492 snec 6682 pmex 6739 dfixp 6786 cbvixp 6801 caucvgprprlemmu 7807 caucvgsr 7914 pitonnlem1 7957 mertenslem2 11789 4sqlemafi 12660 dfrhm2 13858 toponsspwpwg 14436 tgval2 14465 2lgslem1b 15508 if0ab 15674 bdcuni 15745 bj-dfom 15802 |
| Copyright terms: Public domain | W3C validator |