![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > abbii | GIF version |
Description: Equivalent wff's yield equal class abstractions (inference form). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
abbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
abbii | ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi 2202 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) | |
2 | abbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | mpgbi 1387 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1290 {cab 2075 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-11 1443 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 |
This theorem is referenced by: rabswap 2546 rabbiia 2605 rabab 2641 csb2 2936 cbvcsb 2938 csbid 2941 csbco 2943 cbvreucsf 2993 unrab 3271 inrab 3272 inrab2 3273 difrab 3274 rabun2 3279 dfnul3 3290 rab0 3315 tprot 3539 pw0 3590 dfuni2 3661 unipr 3673 dfint2 3696 int0 3708 dfiunv2 3772 cbviun 3773 cbviin 3774 iunrab 3783 iunid 3791 viin 3795 cbvopab 3915 cbvopab1 3917 cbvopab2 3918 cbvopab1s 3919 cbvopab2v 3921 unopab 3923 iunopab 4117 abnex 4282 uniuni 4286 ruv 4379 rabxp 4487 dfdm3 4636 dfrn2 4637 dfrn3 4638 dfdm4 4641 dfdmf 4642 dmun 4656 dmopab 4660 dmopabss 4661 dmopab3 4662 dfrnf 4689 rnopab 4695 rnmpt 4696 dfima2 4789 dfima3 4790 imadmrn 4797 imai 4801 args 4814 mptpreima 4937 dfiota2 4994 cbviota 4998 sb8iota 5000 dffv4g 5315 dfimafn2 5367 fnasrn 5489 fnasrng 5491 elabrex 5551 abrexco 5552 dfoprab2 5710 cbvoprab2 5735 dmoprab 5743 rnoprab 5745 rnoprab2 5746 fnrnov 5804 abrexex2g 5905 abrexex2 5909 abexssex 5910 abexex 5911 oprabrexex2 5915 dfopab2 5973 cnvoprab 6013 tfr1onlemaccex 6127 tfrcllemaccex 6140 tfrcldm 6142 frec0g 6176 frecsuc 6186 snec 6367 pmex 6424 dfixp 6471 cbvixp 6486 caucvgprprlemmu 7308 caucvgsr 7401 pitonnlem1 7436 mertenslem2 10984 toponsspwpwg 11774 tgval2 11805 bdcuni 12033 bj-dfom 12094 |
Copyright terms: Public domain | W3C validator |