| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abbii | GIF version | ||
| Description: Equivalent wff's yield equal class abstractions (inference form). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| abbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| abbii | ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abbi 2320 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) | |
| 2 | abbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | mpgbi 1476 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 {cab 2192 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 |
| This theorem is referenced by: rabswap 2686 rabbiia 2758 rabab 2795 csb2 3099 cbvcsbw 3101 cbvcsb 3102 csbid 3105 csbco 3107 csbcow 3108 cbvreucsf 3162 unrab 3448 inrab 3449 inrab2 3450 difrab 3451 rabun2 3456 dfnul3 3467 rab0 3493 tprot 3731 pw0 3786 dfuni2 3858 unipr 3870 dfint2 3893 int0 3905 dfiunv2 3969 cbviun 3970 cbviin 3971 iunrab 3981 iunid 3989 viin 3993 cbvopab 4123 cbvopab1 4125 cbvopab2 4126 cbvopab1s 4127 cbvopab2v 4129 unopab 4131 iunopab 4336 abnex 4502 uniuni 4506 ruv 4606 rabxp 4720 dfdm3 4873 dfrn2 4874 dfrn3 4875 dfdm4 4879 dfdmf 4880 dmun 4894 dmopab 4898 dmopabss 4899 dmopab3 4900 dfrnf 4928 rnopab 4934 rnmpt 4935 dfima2 5033 dfima3 5034 imadmrn 5041 imai 5047 args 5060 mptpreima 5185 dfiota2 5242 cbviota 5246 sb8iota 5248 dffv4g 5586 dfimafn2 5641 fnasrn 5771 fnasrng 5773 elabrex 5839 elabrexg 5840 abrexco 5841 dfoprab2 6005 cbvoprab2 6031 dmoprab 6039 rnoprab 6041 rnoprab2 6042 fnrnov 6105 abrexex2g 6218 abrexex2 6222 abexssex 6223 abexex 6224 oprabrexex2 6228 dfopab2 6288 cnvoprab 6333 tfr1onlemaccex 6447 tfrcllemaccex 6460 tfrcldm 6462 frec0g 6496 frecsuc 6506 snec 6696 pmex 6753 dfixp 6800 cbvixp 6815 caucvgprprlemmu 7828 caucvgsr 7935 pitonnlem1 7978 mertenslem2 11922 4sqlemafi 12793 dfrhm2 13991 toponsspwpwg 14569 tgval2 14598 2lgslem1b 15641 if0ab 15880 bdcuni 15950 bj-dfom 16007 |
| Copyright terms: Public domain | W3C validator |