| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abbii | GIF version | ||
| Description: Equivalent wff's yield equal class abstractions (inference form). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| abbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| abbii | ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abbi 2343 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) | |
| 2 | abbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | mpgbi 1498 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1395 {cab 2215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 |
| This theorem is referenced by: rabswap 2710 rabbiia 2784 rabab 2821 csb2 3126 cbvcsbw 3128 cbvcsb 3129 csbid 3132 csbco 3134 csbcow 3135 cbvreucsf 3189 unrab 3475 inrab 3476 inrab2 3477 difrab 3478 rabun2 3483 dfnul3 3494 rab0 3520 tprot 3759 pw0 3814 dfuni2 3889 unipr 3901 dfint2 3924 int0 3936 dfiunv2 4000 cbviun 4001 cbviin 4002 iunrab 4012 iunid 4020 viin 4024 cbvopab 4154 cbvopab1 4156 cbvopab2 4157 cbvopab1s 4158 cbvopab2v 4160 unopab 4162 iunopab 4369 abnex 4537 uniuni 4541 ruv 4641 rabxp 4755 dfdm3 4908 dfrn2 4909 dfrn3 4910 dfdm4 4914 dfdmf 4915 dmun 4929 dmopab 4933 dmopabss 4934 dmopab3 4935 dfrnf 4964 rnopab 4970 rnmpt 4971 dfima2 5069 dfima3 5070 imadmrn 5077 imai 5083 args 5096 mptpreima 5221 dfiota2 5278 cbviota 5282 cbviotavw 5283 sb8iota 5285 dffv4g 5623 dfimafn2 5682 fnasrn 5812 fnasrng 5814 elabrex 5880 elabrexg 5881 abrexco 5882 dfoprab2 6050 cbvoprab2 6076 dmoprab 6084 rnoprab 6086 rnoprab2 6087 fnrnov 6150 abrexex2g 6263 abrexex2 6267 abexssex 6268 abexex 6269 oprabrexex2 6273 dfopab2 6333 cnvoprab 6378 tfr1onlemaccex 6492 tfrcllemaccex 6505 tfrcldm 6507 frec0g 6541 frecsuc 6551 snec 6741 pmex 6798 dfixp 6845 cbvixp 6860 caucvgprprlemmu 7878 caucvgsr 7985 pitonnlem1 8028 mertenslem2 12042 4sqlemafi 12913 dfrhm2 14112 toponsspwpwg 14690 tgval2 14719 2lgslem1b 15762 if0ab 16127 bdcuni 16197 bj-dfom 16254 |
| Copyright terms: Public domain | W3C validator |