![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > abbii | GIF version |
Description: Equivalent wff's yield equal class abstractions (inference form). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
abbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
abbii | ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi 2307 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) | |
2 | abbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | mpgbi 1463 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 {cab 2179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 |
This theorem is referenced by: rabswap 2673 rabbiia 2745 rabab 2781 csb2 3083 cbvcsbw 3085 cbvcsb 3086 csbid 3089 csbco 3091 csbcow 3092 cbvreucsf 3146 unrab 3431 inrab 3432 inrab2 3433 difrab 3434 rabun2 3439 dfnul3 3450 rab0 3476 tprot 3712 pw0 3766 dfuni2 3838 unipr 3850 dfint2 3873 int0 3885 dfiunv2 3949 cbviun 3950 cbviin 3951 iunrab 3961 iunid 3969 viin 3973 cbvopab 4101 cbvopab1 4103 cbvopab2 4104 cbvopab1s 4105 cbvopab2v 4107 unopab 4109 iunopab 4313 abnex 4479 uniuni 4483 ruv 4583 rabxp 4697 dfdm3 4850 dfrn2 4851 dfrn3 4852 dfdm4 4855 dfdmf 4856 dmun 4870 dmopab 4874 dmopabss 4875 dmopab3 4876 dfrnf 4904 rnopab 4910 rnmpt 4911 dfima2 5008 dfima3 5009 imadmrn 5016 imai 5022 args 5035 mptpreima 5160 dfiota2 5217 cbviota 5221 sb8iota 5223 dffv4g 5552 dfimafn2 5607 fnasrn 5737 fnasrng 5739 elabrex 5801 elabrexg 5802 abrexco 5803 dfoprab2 5966 cbvoprab2 5992 dmoprab 6000 rnoprab 6002 rnoprab2 6003 fnrnov 6066 abrexex2g 6174 abrexex2 6178 abexssex 6179 abexex 6180 oprabrexex2 6184 dfopab2 6244 cnvoprab 6289 tfr1onlemaccex 6403 tfrcllemaccex 6416 tfrcldm 6418 frec0g 6452 frecsuc 6462 snec 6652 pmex 6709 dfixp 6756 cbvixp 6771 caucvgprprlemmu 7757 caucvgsr 7864 pitonnlem1 7907 mertenslem2 11682 4sqlemafi 12536 dfrhm2 13653 toponsspwpwg 14201 tgval2 14230 2lgslem1b 15246 if0ab 15367 bdcuni 15438 bj-dfom 15495 |
Copyright terms: Public domain | W3C validator |