ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mt2d GIF version

Theorem mt2d 626
Description: Modus tollens deduction. (Contributed by NM, 4-Jul-1994.)
Hypotheses
Ref Expression
mt2d.1 (𝜑𝜒)
mt2d.2 (𝜑 → (𝜓 → ¬ 𝜒))
Assertion
Ref Expression
mt2d (𝜑 → ¬ 𝜓)

Proof of Theorem mt2d
StepHypRef Expression
1 mt2d.1 . 2 (𝜑𝜒)
2 mt2d.2 . . 3 (𝜑 → (𝜓 → ¬ 𝜒))
32con2d 625 . 2 (𝜑 → (𝜒 → ¬ 𝜓))
41, 3mpd 13 1 (𝜑 → ¬ 𝜓)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 615  ax-in2 616
This theorem is referenced by:  nsyl3  627  mt2i  645  en2lp  4590  recnz  9419  xnn0dcle  9877  fznuz  10177  uznfz  10178  nninfctlemfo  12207  pcadd  12509  oddennn  12609  perfectlem1  15235  lgseisenlem1  15311
  Copyright terms: Public domain W3C validator