ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nsyl3 GIF version

Theorem nsyl3 616
Description: A negated syllogism inference. (Contributed by NM, 1-Dec-1995.) (Revised by NM, 13-Jun-2013.)
Hypotheses
Ref Expression
nsyl3.1 (𝜑 → ¬ 𝜓)
nsyl3.2 (𝜒𝜓)
Assertion
Ref Expression
nsyl3 (𝜒 → ¬ 𝜑)

Proof of Theorem nsyl3
StepHypRef Expression
1 nsyl3.2 . 2 (𝜒𝜓)
2 nsyl3.1 . . 3 (𝜑 → ¬ 𝜓)
32a1i 9 . 2 (𝜒 → (𝜑 → ¬ 𝜓))
41, 3mt2d 615 1 (𝜒 → ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 604  ax-in2 605
This theorem is referenced by:  con2i  617  nsyl  618  pm2.65i  629  cesare  2118  cesaro  2122  pwnss  4138  sucprcreg  4526  reg3exmidlemwe  4556  reldmtpos  6221  snexxph  6915  elfi2  6937  ismkvnex  7119  fzn  9977  seq3f1olemqsum  10435  pcmpt2  12274
  Copyright terms: Public domain W3C validator