Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fznuz | GIF version |
Description: Disjointness of the upper integers and a finite sequence. (Contributed by Mario Carneiro, 30-Jun-2013.) (Revised by Mario Carneiro, 24-Aug-2013.) |
Ref | Expression |
---|---|
fznuz | ⊢ (𝐾 ∈ (𝑀...𝑁) → ¬ 𝐾 ∈ (ℤ≥‘(𝑁 + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzle2 9954 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ≤ 𝑁) | |
2 | elfzel2 9950 | . . . 4 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) | |
3 | eluzp1l 9482 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑁 < 𝐾) | |
4 | 3 | ex 114 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝐾 ∈ (ℤ≥‘(𝑁 + 1)) → 𝑁 < 𝐾)) |
5 | 2, 4 | syl 14 | . . 3 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝐾 ∈ (ℤ≥‘(𝑁 + 1)) → 𝑁 < 𝐾)) |
6 | elfzelz 9952 | . . . 4 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) | |
7 | zltnle 9229 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 < 𝐾 ↔ ¬ 𝐾 ≤ 𝑁)) | |
8 | 2, 6, 7 | syl2anc 409 | . . 3 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑁 < 𝐾 ↔ ¬ 𝐾 ≤ 𝑁)) |
9 | 5, 8 | sylibd 148 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝐾 ∈ (ℤ≥‘(𝑁 + 1)) → ¬ 𝐾 ≤ 𝑁)) |
10 | 1, 9 | mt2d 615 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → ¬ 𝐾 ∈ (ℤ≥‘(𝑁 + 1))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 ∈ wcel 2135 class class class wbr 3977 ‘cfv 5183 (class class class)co 5837 1c1 7746 + caddc 7748 < clt 7925 ≤ cle 7926 ℤcz 9183 ℤ≥cuz 9458 ...cfz 9936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-sep 4095 ax-pow 4148 ax-pr 4182 ax-un 4406 ax-setind 4509 ax-cnex 7836 ax-resscn 7837 ax-1cn 7838 ax-1re 7839 ax-icn 7840 ax-addcl 7841 ax-addrcl 7842 ax-mulcl 7843 ax-addcom 7845 ax-addass 7847 ax-distr 7849 ax-i2m1 7850 ax-0lt1 7851 ax-0id 7853 ax-rnegex 7854 ax-cnre 7856 ax-pre-ltirr 7857 ax-pre-ltwlin 7858 ax-pre-lttrn 7859 ax-pre-ltadd 7861 |
This theorem depends on definitions: df-bi 116 df-3or 968 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-nel 2430 df-ral 2447 df-rex 2448 df-reu 2449 df-rab 2451 df-v 2724 df-sbc 2948 df-dif 3114 df-un 3116 df-in 3118 df-ss 3125 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-int 3820 df-br 3978 df-opab 4039 df-mpt 4040 df-id 4266 df-xp 4605 df-rel 4606 df-cnv 4607 df-co 4608 df-dm 4609 df-rn 4610 df-res 4611 df-ima 4612 df-iota 5148 df-fun 5185 df-fn 5186 df-f 5187 df-fv 5191 df-riota 5793 df-ov 5840 df-oprab 5841 df-mpo 5842 df-pnf 7927 df-mnf 7928 df-xr 7929 df-ltxr 7930 df-le 7931 df-sub 8063 df-neg 8064 df-inn 8850 df-n0 9107 df-z 9184 df-uz 9459 df-fz 9937 |
This theorem is referenced by: fsum3cvg 11309 fproddccvg 11503 |
Copyright terms: Public domain | W3C validator |