ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0dcle GIF version

Theorem xnn0dcle 9738
Description: Decidability of for extended nonnegative integers. (Contributed by Jim Kingdon, 13-Oct-2024.)
Assertion
Ref Expression
xnn0dcle ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → DECID 𝐴𝐵)

Proof of Theorem xnn0dcle
StepHypRef Expression
1 simpr 109 . . . . 5 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℕ0)
21nn0zd 9311 . . . 4 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℤ)
3 simplr 520 . . . . 5 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐵 ∈ ℕ0)
43nn0zd 9311 . . . 4 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐵 ∈ ℤ)
5 zdcle 9267 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴𝐵)
62, 4, 5syl2anc 409 . . 3 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → DECID 𝐴𝐵)
7 simpr 109 . . . . . 6 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐴 = +∞)
8 simplr 520 . . . . . . . . 9 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐵 ∈ ℕ0)
98nn0red 9168 . . . . . . . 8 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐵 ∈ ℝ)
109ltpnfd 9717 . . . . . . 7 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐵 < +∞)
11 pnfxr 7951 . . . . . . . . 9 +∞ ∈ ℝ*
129rexrd 7948 . . . . . . . . 9 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐵 ∈ ℝ*)
13 xrlenlt 7963 . . . . . . . . 9 ((+∞ ∈ ℝ*𝐵 ∈ ℝ*) → (+∞ ≤ 𝐵 ↔ ¬ 𝐵 < +∞))
1411, 12, 13sylancr 411 . . . . . . . 8 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → (+∞ ≤ 𝐵 ↔ ¬ 𝐵 < +∞))
1514biimpd 143 . . . . . . 7 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → (+∞ ≤ 𝐵 → ¬ 𝐵 < +∞))
1610, 15mt2d 615 . . . . . 6 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → ¬ +∞ ≤ 𝐵)
177, 16eqnbrtrd 4000 . . . . 5 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → ¬ 𝐴𝐵)
1817olcd 724 . . . 4 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
19 df-dc 825 . . . 4 (DECID 𝐴𝐵 ↔ (𝐴𝐵 ∨ ¬ 𝐴𝐵))
2018, 19sylibr 133 . . 3 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → DECID 𝐴𝐵)
21 elxnn0 9179 . . . . 5 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
2221biimpi 119 . . . 4 (𝐴 ∈ ℕ0* → (𝐴 ∈ ℕ0𝐴 = +∞))
2322ad2antrr 480 . . 3 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) → (𝐴 ∈ ℕ0𝐴 = +∞))
246, 20, 23mpjaodan 788 . 2 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) → DECID 𝐴𝐵)
25 xnn0xr 9182 . . . . . . 7 (𝐴 ∈ ℕ0*𝐴 ∈ ℝ*)
2625ad2antrr 480 . . . . . 6 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐴 ∈ ℝ*)
27 pnfge 9725 . . . . . 6 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
2826, 27syl 14 . . . . 5 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐴 ≤ +∞)
29 simpr 109 . . . . 5 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐵 = +∞)
3028, 29breqtrrd 4010 . . . 4 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐴𝐵)
3130orcd 723 . . 3 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
3231, 19sylibr 133 . 2 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → DECID 𝐴𝐵)
33 elxnn0 9179 . . . 4 (𝐵 ∈ ℕ0* ↔ (𝐵 ∈ ℕ0𝐵 = +∞))
3433biimpi 119 . . 3 (𝐵 ∈ ℕ0* → (𝐵 ∈ ℕ0𝐵 = +∞))
3534adantl 275 . 2 ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐵 ∈ ℕ0𝐵 = +∞))
3624, 32, 35mpjaodan 788 1 ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → DECID 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 824   = wceq 1343  wcel 2136   class class class wbr 3982  +∞cpnf 7930  *cxr 7932   < clt 7933  cle 7934  0cn0 9114  0*cxnn0 9177  cz 9191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-xnn0 9178  df-z 9192
This theorem is referenced by:  pcgcd  12260
  Copyright terms: Public domain W3C validator