ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0dcle GIF version

Theorem xnn0dcle 9924
Description: Decidability of for extended nonnegative integers. (Contributed by Jim Kingdon, 13-Oct-2024.)
Assertion
Ref Expression
xnn0dcle ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → DECID 𝐴𝐵)

Proof of Theorem xnn0dcle
StepHypRef Expression
1 simpr 110 . . . . 5 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℕ0)
21nn0zd 9493 . . . 4 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℤ)
3 simplr 528 . . . . 5 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐵 ∈ ℕ0)
43nn0zd 9493 . . . 4 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐵 ∈ ℤ)
5 zdcle 9449 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴𝐵)
62, 4, 5syl2anc 411 . . 3 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → DECID 𝐴𝐵)
7 simpr 110 . . . . . 6 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐴 = +∞)
8 simplr 528 . . . . . . . . 9 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐵 ∈ ℕ0)
98nn0red 9349 . . . . . . . 8 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐵 ∈ ℝ)
109ltpnfd 9903 . . . . . . 7 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐵 < +∞)
11 pnfxr 8125 . . . . . . . . 9 +∞ ∈ ℝ*
129rexrd 8122 . . . . . . . . 9 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐵 ∈ ℝ*)
13 xrlenlt 8137 . . . . . . . . 9 ((+∞ ∈ ℝ*𝐵 ∈ ℝ*) → (+∞ ≤ 𝐵 ↔ ¬ 𝐵 < +∞))
1411, 12, 13sylancr 414 . . . . . . . 8 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → (+∞ ≤ 𝐵 ↔ ¬ 𝐵 < +∞))
1514biimpd 144 . . . . . . 7 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → (+∞ ≤ 𝐵 → ¬ 𝐵 < +∞))
1610, 15mt2d 626 . . . . . 6 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → ¬ +∞ ≤ 𝐵)
177, 16eqnbrtrd 4062 . . . . 5 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → ¬ 𝐴𝐵)
1817olcd 736 . . . 4 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
19 df-dc 837 . . . 4 (DECID 𝐴𝐵 ↔ (𝐴𝐵 ∨ ¬ 𝐴𝐵))
2018, 19sylibr 134 . . 3 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → DECID 𝐴𝐵)
21 elxnn0 9360 . . . . 5 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
2221biimpi 120 . . . 4 (𝐴 ∈ ℕ0* → (𝐴 ∈ ℕ0𝐴 = +∞))
2322ad2antrr 488 . . 3 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) → (𝐴 ∈ ℕ0𝐴 = +∞))
246, 20, 23mpjaodan 800 . 2 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) → DECID 𝐴𝐵)
25 xnn0xr 9363 . . . . . . 7 (𝐴 ∈ ℕ0*𝐴 ∈ ℝ*)
2625ad2antrr 488 . . . . . 6 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐴 ∈ ℝ*)
27 pnfge 9911 . . . . . 6 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
2826, 27syl 14 . . . . 5 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐴 ≤ +∞)
29 simpr 110 . . . . 5 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐵 = +∞)
3028, 29breqtrrd 4072 . . . 4 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐴𝐵)
3130orcd 735 . . 3 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
3231, 19sylibr 134 . 2 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → DECID 𝐴𝐵)
33 elxnn0 9360 . . . 4 (𝐵 ∈ ℕ0* ↔ (𝐵 ∈ ℕ0𝐵 = +∞))
3433biimpi 120 . . 3 (𝐵 ∈ ℕ0* → (𝐵 ∈ ℕ0𝐵 = +∞))
3534adantl 277 . 2 ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐵 ∈ ℕ0𝐵 = +∞))
3624, 32, 35mpjaodan 800 1 ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → DECID 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836   = wceq 1373  wcel 2176   class class class wbr 4044  +∞cpnf 8104  *cxr 8106   < clt 8107  cle 8108  0cn0 9295  0*cxnn0 9358  cz 9372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-xnn0 9359  df-z 9373
This theorem is referenced by:  pcgcd  12652
  Copyright terms: Public domain W3C validator