Proof of Theorem xnn0dcle
Step | Hyp | Ref
| Expression |
1 | | simpr 109 |
. . . . 5
⊢ ((((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈
ℕ0) |
2 | 1 | nn0zd 9311 |
. . . 4
⊢ ((((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈
ℤ) |
3 | | simplr 520 |
. . . . 5
⊢ ((((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐵 ∈
ℕ0) |
4 | 3 | nn0zd 9311 |
. . . 4
⊢ ((((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐵 ∈
ℤ) |
5 | | zdcle 9267 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) →
DECID 𝐴 ≤
𝐵) |
6 | 2, 4, 5 | syl2anc 409 |
. . 3
⊢ ((((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) ∧ 𝐴 ∈ ℕ0) →
DECID 𝐴 ≤
𝐵) |
7 | | simpr 109 |
. . . . . 6
⊢ ((((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) ∧ 𝐴 = +∞) → 𝐴 = +∞) |
8 | | simplr 520 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) ∧ 𝐴 = +∞) → 𝐵 ∈
ℕ0) |
9 | 8 | nn0red 9168 |
. . . . . . . 8
⊢ ((((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) ∧ 𝐴 = +∞) → 𝐵 ∈ ℝ) |
10 | 9 | ltpnfd 9717 |
. . . . . . 7
⊢ ((((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) ∧ 𝐴 = +∞) → 𝐵 < +∞) |
11 | | pnfxr 7951 |
. . . . . . . . 9
⊢ +∞
∈ ℝ* |
12 | 9 | rexrd 7948 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) ∧ 𝐴 = +∞) → 𝐵 ∈
ℝ*) |
13 | | xrlenlt 7963 |
. . . . . . . . 9
⊢
((+∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ*) →
(+∞ ≤ 𝐵 ↔
¬ 𝐵 <
+∞)) |
14 | 11, 12, 13 | sylancr 411 |
. . . . . . . 8
⊢ ((((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) ∧ 𝐴 = +∞) → (+∞ ≤ 𝐵 ↔ ¬ 𝐵 < +∞)) |
15 | 14 | biimpd 143 |
. . . . . . 7
⊢ ((((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) ∧ 𝐴 = +∞) → (+∞ ≤ 𝐵 → ¬ 𝐵 < +∞)) |
16 | 10, 15 | mt2d 615 |
. . . . . 6
⊢ ((((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) ∧ 𝐴 = +∞) → ¬ +∞ ≤
𝐵) |
17 | 7, 16 | eqnbrtrd 4000 |
. . . . 5
⊢ ((((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) ∧ 𝐴 = +∞) → ¬ 𝐴 ≤ 𝐵) |
18 | 17 | olcd 724 |
. . . 4
⊢ ((((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) ∧ 𝐴 = +∞) → (𝐴 ≤ 𝐵 ∨ ¬ 𝐴 ≤ 𝐵)) |
19 | | df-dc 825 |
. . . 4
⊢
(DECID 𝐴 ≤ 𝐵 ↔ (𝐴 ≤ 𝐵 ∨ ¬ 𝐴 ≤ 𝐵)) |
20 | 18, 19 | sylibr 133 |
. . 3
⊢ ((((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) ∧ 𝐴 = +∞) → DECID
𝐴 ≤ 𝐵) |
21 | | elxnn0 9179 |
. . . . 5
⊢ (𝐴 ∈
ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
22 | 21 | biimpi 119 |
. . . 4
⊢ (𝐴 ∈
ℕ0* → (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
23 | 22 | ad2antrr 480 |
. . 3
⊢ (((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) → (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
24 | 6, 20, 23 | mpjaodan 788 |
. 2
⊢ (((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) → DECID 𝐴 ≤ 𝐵) |
25 | | xnn0xr 9182 |
. . . . . . 7
⊢ (𝐴 ∈
ℕ0* → 𝐴 ∈
ℝ*) |
26 | 25 | ad2antrr 480 |
. . . . . 6
⊢ (((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 = +∞) →
𝐴 ∈
ℝ*) |
27 | | pnfge 9725 |
. . . . . 6
⊢ (𝐴 ∈ ℝ*
→ 𝐴 ≤
+∞) |
28 | 26, 27 | syl 14 |
. . . . 5
⊢ (((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 = +∞) →
𝐴 ≤
+∞) |
29 | | simpr 109 |
. . . . 5
⊢ (((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 = +∞) →
𝐵 =
+∞) |
30 | 28, 29 | breqtrrd 4010 |
. . . 4
⊢ (((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 = +∞) →
𝐴 ≤ 𝐵) |
31 | 30 | orcd 723 |
. . 3
⊢ (((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 = +∞) →
(𝐴 ≤ 𝐵 ∨ ¬ 𝐴 ≤ 𝐵)) |
32 | 31, 19 | sylibr 133 |
. 2
⊢ (((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 = +∞) →
DECID 𝐴 ≤
𝐵) |
33 | | elxnn0 9179 |
. . . 4
⊢ (𝐵 ∈
ℕ0* ↔ (𝐵 ∈ ℕ0 ∨ 𝐵 = +∞)) |
34 | 33 | biimpi 119 |
. . 3
⊢ (𝐵 ∈
ℕ0* → (𝐵 ∈ ℕ0 ∨ 𝐵 = +∞)) |
35 | 34 | adantl 275 |
. 2
⊢ ((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
→ (𝐵 ∈
ℕ0 ∨ 𝐵
= +∞)) |
36 | 24, 32, 35 | mpjaodan 788 |
1
⊢ ((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
→ DECID 𝐴 ≤ 𝐵) |