Proof of Theorem xnn0dcle
| Step | Hyp | Ref
| Expression |
| 1 | | simpr 110 |
. . . . 5
⊢ ((((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈
ℕ0) |
| 2 | 1 | nn0zd 9446 |
. . . 4
⊢ ((((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈
ℤ) |
| 3 | | simplr 528 |
. . . . 5
⊢ ((((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐵 ∈
ℕ0) |
| 4 | 3 | nn0zd 9446 |
. . . 4
⊢ ((((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐵 ∈
ℤ) |
| 5 | | zdcle 9402 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) →
DECID 𝐴 ≤
𝐵) |
| 6 | 2, 4, 5 | syl2anc 411 |
. . 3
⊢ ((((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) ∧ 𝐴 ∈ ℕ0) →
DECID 𝐴 ≤
𝐵) |
| 7 | | simpr 110 |
. . . . . 6
⊢ ((((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) ∧ 𝐴 = +∞) → 𝐴 = +∞) |
| 8 | | simplr 528 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) ∧ 𝐴 = +∞) → 𝐵 ∈
ℕ0) |
| 9 | 8 | nn0red 9303 |
. . . . . . . 8
⊢ ((((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) ∧ 𝐴 = +∞) → 𝐵 ∈ ℝ) |
| 10 | 9 | ltpnfd 9856 |
. . . . . . 7
⊢ ((((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) ∧ 𝐴 = +∞) → 𝐵 < +∞) |
| 11 | | pnfxr 8079 |
. . . . . . . . 9
⊢ +∞
∈ ℝ* |
| 12 | 9 | rexrd 8076 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) ∧ 𝐴 = +∞) → 𝐵 ∈
ℝ*) |
| 13 | | xrlenlt 8091 |
. . . . . . . . 9
⊢
((+∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ*) →
(+∞ ≤ 𝐵 ↔
¬ 𝐵 <
+∞)) |
| 14 | 11, 12, 13 | sylancr 414 |
. . . . . . . 8
⊢ ((((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) ∧ 𝐴 = +∞) → (+∞ ≤ 𝐵 ↔ ¬ 𝐵 < +∞)) |
| 15 | 14 | biimpd 144 |
. . . . . . 7
⊢ ((((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) ∧ 𝐴 = +∞) → (+∞ ≤ 𝐵 → ¬ 𝐵 < +∞)) |
| 16 | 10, 15 | mt2d 626 |
. . . . . 6
⊢ ((((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) ∧ 𝐴 = +∞) → ¬ +∞ ≤
𝐵) |
| 17 | 7, 16 | eqnbrtrd 4051 |
. . . . 5
⊢ ((((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) ∧ 𝐴 = +∞) → ¬ 𝐴 ≤ 𝐵) |
| 18 | 17 | olcd 735 |
. . . 4
⊢ ((((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) ∧ 𝐴 = +∞) → (𝐴 ≤ 𝐵 ∨ ¬ 𝐴 ≤ 𝐵)) |
| 19 | | df-dc 836 |
. . . 4
⊢
(DECID 𝐴 ≤ 𝐵 ↔ (𝐴 ≤ 𝐵 ∨ ¬ 𝐴 ≤ 𝐵)) |
| 20 | 18, 19 | sylibr 134 |
. . 3
⊢ ((((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) ∧ 𝐴 = +∞) → DECID
𝐴 ≤ 𝐵) |
| 21 | | elxnn0 9314 |
. . . . 5
⊢ (𝐴 ∈
ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
| 22 | 21 | biimpi 120 |
. . . 4
⊢ (𝐴 ∈
ℕ0* → (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
| 23 | 22 | ad2antrr 488 |
. . 3
⊢ (((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) → (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
| 24 | 6, 20, 23 | mpjaodan 799 |
. 2
⊢ (((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 ∈
ℕ0) → DECID 𝐴 ≤ 𝐵) |
| 25 | | xnn0xr 9317 |
. . . . . . 7
⊢ (𝐴 ∈
ℕ0* → 𝐴 ∈
ℝ*) |
| 26 | 25 | ad2antrr 488 |
. . . . . 6
⊢ (((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 = +∞) →
𝐴 ∈
ℝ*) |
| 27 | | pnfge 9864 |
. . . . . 6
⊢ (𝐴 ∈ ℝ*
→ 𝐴 ≤
+∞) |
| 28 | 26, 27 | syl 14 |
. . . . 5
⊢ (((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 = +∞) →
𝐴 ≤
+∞) |
| 29 | | simpr 110 |
. . . . 5
⊢ (((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 = +∞) →
𝐵 =
+∞) |
| 30 | 28, 29 | breqtrrd 4061 |
. . . 4
⊢ (((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 = +∞) →
𝐴 ≤ 𝐵) |
| 31 | 30 | orcd 734 |
. . 3
⊢ (((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 = +∞) →
(𝐴 ≤ 𝐵 ∨ ¬ 𝐴 ≤ 𝐵)) |
| 32 | 31, 19 | sylibr 134 |
. 2
⊢ (((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
∧ 𝐵 = +∞) →
DECID 𝐴 ≤
𝐵) |
| 33 | | elxnn0 9314 |
. . . 4
⊢ (𝐵 ∈
ℕ0* ↔ (𝐵 ∈ ℕ0 ∨ 𝐵 = +∞)) |
| 34 | 33 | biimpi 120 |
. . 3
⊢ (𝐵 ∈
ℕ0* → (𝐵 ∈ ℕ0 ∨ 𝐵 = +∞)) |
| 35 | 34 | adantl 277 |
. 2
⊢ ((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
→ (𝐵 ∈
ℕ0 ∨ 𝐵
= +∞)) |
| 36 | 24, 32, 35 | mpjaodan 799 |
1
⊢ ((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
→ DECID 𝐴 ≤ 𝐵) |