ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0dcle GIF version

Theorem xnn0dcle 9748
Description: Decidability of for extended nonnegative integers. (Contributed by Jim Kingdon, 13-Oct-2024.)
Assertion
Ref Expression
xnn0dcle ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → DECID 𝐴𝐵)

Proof of Theorem xnn0dcle
StepHypRef Expression
1 simpr 109 . . . . 5 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℕ0)
21nn0zd 9321 . . . 4 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℤ)
3 simplr 525 . . . . 5 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐵 ∈ ℕ0)
43nn0zd 9321 . . . 4 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐵 ∈ ℤ)
5 zdcle 9277 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴𝐵)
62, 4, 5syl2anc 409 . . 3 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → DECID 𝐴𝐵)
7 simpr 109 . . . . . 6 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐴 = +∞)
8 simplr 525 . . . . . . . . 9 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐵 ∈ ℕ0)
98nn0red 9178 . . . . . . . 8 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐵 ∈ ℝ)
109ltpnfd 9727 . . . . . . 7 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐵 < +∞)
11 pnfxr 7961 . . . . . . . . 9 +∞ ∈ ℝ*
129rexrd 7958 . . . . . . . . 9 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐵 ∈ ℝ*)
13 xrlenlt 7973 . . . . . . . . 9 ((+∞ ∈ ℝ*𝐵 ∈ ℝ*) → (+∞ ≤ 𝐵 ↔ ¬ 𝐵 < +∞))
1411, 12, 13sylancr 412 . . . . . . . 8 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → (+∞ ≤ 𝐵 ↔ ¬ 𝐵 < +∞))
1514biimpd 143 . . . . . . 7 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → (+∞ ≤ 𝐵 → ¬ 𝐵 < +∞))
1610, 15mt2d 620 . . . . . 6 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → ¬ +∞ ≤ 𝐵)
177, 16eqnbrtrd 4005 . . . . 5 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → ¬ 𝐴𝐵)
1817olcd 729 . . . 4 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
19 df-dc 830 . . . 4 (DECID 𝐴𝐵 ↔ (𝐴𝐵 ∨ ¬ 𝐴𝐵))
2018, 19sylibr 133 . . 3 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → DECID 𝐴𝐵)
21 elxnn0 9189 . . . . 5 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
2221biimpi 119 . . . 4 (𝐴 ∈ ℕ0* → (𝐴 ∈ ℕ0𝐴 = +∞))
2322ad2antrr 485 . . 3 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) → (𝐴 ∈ ℕ0𝐴 = +∞))
246, 20, 23mpjaodan 793 . 2 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) → DECID 𝐴𝐵)
25 xnn0xr 9192 . . . . . . 7 (𝐴 ∈ ℕ0*𝐴 ∈ ℝ*)
2625ad2antrr 485 . . . . . 6 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐴 ∈ ℝ*)
27 pnfge 9735 . . . . . 6 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
2826, 27syl 14 . . . . 5 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐴 ≤ +∞)
29 simpr 109 . . . . 5 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐵 = +∞)
3028, 29breqtrrd 4015 . . . 4 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐴𝐵)
3130orcd 728 . . 3 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
3231, 19sylibr 133 . 2 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → DECID 𝐴𝐵)
33 elxnn0 9189 . . . 4 (𝐵 ∈ ℕ0* ↔ (𝐵 ∈ ℕ0𝐵 = +∞))
3433biimpi 119 . . 3 (𝐵 ∈ ℕ0* → (𝐵 ∈ ℕ0𝐵 = +∞))
3534adantl 275 . 2 ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐵 ∈ ℕ0𝐵 = +∞))
3624, 32, 35mpjaodan 793 1 ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → DECID 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  DECID wdc 829   = wceq 1348  wcel 2141   class class class wbr 3987  +∞cpnf 7940  *cxr 7942   < clt 7943  cle 7944  0cn0 9124  0*cxnn0 9187  cz 9201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7854  ax-resscn 7855  ax-1cn 7856  ax-1re 7857  ax-icn 7858  ax-addcl 7859  ax-addrcl 7860  ax-mulcl 7861  ax-addcom 7863  ax-addass 7865  ax-distr 7867  ax-i2m1 7868  ax-0lt1 7869  ax-0id 7871  ax-rnegex 7872  ax-cnre 7874  ax-pre-ltirr 7875  ax-pre-ltwlin 7876  ax-pre-lttrn 7877  ax-pre-ltadd 7879
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-br 3988  df-opab 4049  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-iota 5158  df-fun 5198  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-pnf 7945  df-mnf 7946  df-xr 7947  df-ltxr 7948  df-le 7949  df-sub 8081  df-neg 8082  df-inn 8868  df-n0 9125  df-xnn0 9188  df-z 9202
This theorem is referenced by:  pcgcd  12271
  Copyright terms: Public domain W3C validator