ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0dcle GIF version

Theorem xnn0dcle 9815
Description: Decidability of for extended nonnegative integers. (Contributed by Jim Kingdon, 13-Oct-2024.)
Assertion
Ref Expression
xnn0dcle ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → DECID 𝐴𝐵)

Proof of Theorem xnn0dcle
StepHypRef Expression
1 simpr 110 . . . . 5 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℕ0)
21nn0zd 9386 . . . 4 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℤ)
3 simplr 528 . . . . 5 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐵 ∈ ℕ0)
43nn0zd 9386 . . . 4 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐵 ∈ ℤ)
5 zdcle 9342 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴𝐵)
62, 4, 5syl2anc 411 . . 3 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → DECID 𝐴𝐵)
7 simpr 110 . . . . . 6 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐴 = +∞)
8 simplr 528 . . . . . . . . 9 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐵 ∈ ℕ0)
98nn0red 9243 . . . . . . . 8 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐵 ∈ ℝ)
109ltpnfd 9794 . . . . . . 7 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐵 < +∞)
11 pnfxr 8023 . . . . . . . . 9 +∞ ∈ ℝ*
129rexrd 8020 . . . . . . . . 9 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐵 ∈ ℝ*)
13 xrlenlt 8035 . . . . . . . . 9 ((+∞ ∈ ℝ*𝐵 ∈ ℝ*) → (+∞ ≤ 𝐵 ↔ ¬ 𝐵 < +∞))
1411, 12, 13sylancr 414 . . . . . . . 8 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → (+∞ ≤ 𝐵 ↔ ¬ 𝐵 < +∞))
1514biimpd 144 . . . . . . 7 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → (+∞ ≤ 𝐵 → ¬ 𝐵 < +∞))
1610, 15mt2d 626 . . . . . 6 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → ¬ +∞ ≤ 𝐵)
177, 16eqnbrtrd 4033 . . . . 5 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → ¬ 𝐴𝐵)
1817olcd 735 . . . 4 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
19 df-dc 836 . . . 4 (DECID 𝐴𝐵 ↔ (𝐴𝐵 ∨ ¬ 𝐴𝐵))
2018, 19sylibr 134 . . 3 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → DECID 𝐴𝐵)
21 elxnn0 9254 . . . . 5 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
2221biimpi 120 . . . 4 (𝐴 ∈ ℕ0* → (𝐴 ∈ ℕ0𝐴 = +∞))
2322ad2antrr 488 . . 3 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) → (𝐴 ∈ ℕ0𝐴 = +∞))
246, 20, 23mpjaodan 799 . 2 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) → DECID 𝐴𝐵)
25 xnn0xr 9257 . . . . . . 7 (𝐴 ∈ ℕ0*𝐴 ∈ ℝ*)
2625ad2antrr 488 . . . . . 6 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐴 ∈ ℝ*)
27 pnfge 9802 . . . . . 6 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
2826, 27syl 14 . . . . 5 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐴 ≤ +∞)
29 simpr 110 . . . . 5 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐵 = +∞)
3028, 29breqtrrd 4043 . . . 4 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐴𝐵)
3130orcd 734 . . 3 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
3231, 19sylibr 134 . 2 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → DECID 𝐴𝐵)
33 elxnn0 9254 . . . 4 (𝐵 ∈ ℕ0* ↔ (𝐵 ∈ ℕ0𝐵 = +∞))
3433biimpi 120 . . 3 (𝐵 ∈ ℕ0* → (𝐵 ∈ ℕ0𝐵 = +∞))
3534adantl 277 . 2 ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐵 ∈ ℕ0𝐵 = +∞))
3624, 32, 35mpjaodan 799 1 ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → DECID 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1363  wcel 2158   class class class wbr 4015  +∞cpnf 8002  *cxr 8004   < clt 8005  cle 8006  0cn0 9189  0*cxnn0 9252  cz 9266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-addcom 7924  ax-addass 7926  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-0id 7932  ax-rnegex 7933  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-ltadd 7940
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-iota 5190  df-fun 5230  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-inn 8933  df-n0 9190  df-xnn0 9253  df-z 9267
This theorem is referenced by:  pcgcd  12341
  Copyright terms: Public domain W3C validator