ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0dcle GIF version

Theorem xnn0dcle 9729
Description: Decidability of for extended nonnegative integers. (Contributed by Jim Kingdon, 13-Oct-2024.)
Assertion
Ref Expression
xnn0dcle ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → DECID 𝐴𝐵)

Proof of Theorem xnn0dcle
StepHypRef Expression
1 simpr 109 . . . . 5 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℕ0)
21nn0zd 9302 . . . 4 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℤ)
3 simplr 520 . . . . 5 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐵 ∈ ℕ0)
43nn0zd 9302 . . . 4 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐵 ∈ ℤ)
5 zdcle 9258 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴𝐵)
62, 4, 5syl2anc 409 . . 3 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → DECID 𝐴𝐵)
7 simpr 109 . . . . . 6 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐴 = +∞)
8 simplr 520 . . . . . . . . 9 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐵 ∈ ℕ0)
98nn0red 9159 . . . . . . . 8 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐵 ∈ ℝ)
109ltpnfd 9708 . . . . . . 7 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐵 < +∞)
11 pnfxr 7942 . . . . . . . . 9 +∞ ∈ ℝ*
129rexrd 7939 . . . . . . . . 9 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐵 ∈ ℝ*)
13 xrlenlt 7954 . . . . . . . . 9 ((+∞ ∈ ℝ*𝐵 ∈ ℝ*) → (+∞ ≤ 𝐵 ↔ ¬ 𝐵 < +∞))
1411, 12, 13sylancr 411 . . . . . . . 8 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → (+∞ ≤ 𝐵 ↔ ¬ 𝐵 < +∞))
1514biimpd 143 . . . . . . 7 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → (+∞ ≤ 𝐵 → ¬ 𝐵 < +∞))
1610, 15mt2d 615 . . . . . 6 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → ¬ +∞ ≤ 𝐵)
177, 16eqnbrtrd 3994 . . . . 5 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → ¬ 𝐴𝐵)
1817olcd 724 . . . 4 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
19 df-dc 825 . . . 4 (DECID 𝐴𝐵 ↔ (𝐴𝐵 ∨ ¬ 𝐴𝐵))
2018, 19sylibr 133 . . 3 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → DECID 𝐴𝐵)
21 elxnn0 9170 . . . . 5 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
2221biimpi 119 . . . 4 (𝐴 ∈ ℕ0* → (𝐴 ∈ ℕ0𝐴 = +∞))
2322ad2antrr 480 . . 3 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) → (𝐴 ∈ ℕ0𝐴 = +∞))
246, 20, 23mpjaodan 788 . 2 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) → DECID 𝐴𝐵)
25 xnn0xr 9173 . . . . . . 7 (𝐴 ∈ ℕ0*𝐴 ∈ ℝ*)
2625ad2antrr 480 . . . . . 6 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐴 ∈ ℝ*)
27 pnfge 9716 . . . . . 6 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
2826, 27syl 14 . . . . 5 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐴 ≤ +∞)
29 simpr 109 . . . . 5 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐵 = +∞)
3028, 29breqtrrd 4004 . . . 4 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐴𝐵)
3130orcd 723 . . 3 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
3231, 19sylibr 133 . 2 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → DECID 𝐴𝐵)
33 elxnn0 9170 . . . 4 (𝐵 ∈ ℕ0* ↔ (𝐵 ∈ ℕ0𝐵 = +∞))
3433biimpi 119 . . 3 (𝐵 ∈ ℕ0* → (𝐵 ∈ ℕ0𝐵 = +∞))
3534adantl 275 . 2 ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐵 ∈ ℕ0𝐵 = +∞))
3624, 32, 35mpjaodan 788 1 ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → DECID 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 824   = wceq 1342  wcel 2135   class class class wbr 3976  +∞cpnf 7921  *cxr 7923   < clt 7924  cle 7925  0cn0 9105  0*cxnn0 9168  cz 9182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-addcom 7844  ax-addass 7846  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-0id 7852  ax-rnegex 7853  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-ltadd 7860
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-br 3977  df-opab 4038  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-iota 5147  df-fun 5184  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-inn 8849  df-n0 9106  df-xnn0 9169  df-z 9183
This theorem is referenced by:  pcgcd  12237
  Copyright terms: Public domain W3C validator