Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > recnz | GIF version |
Description: The reciprocal of a number greater than 1 is not an integer. (Contributed by NM, 3-May-2005.) |
Ref | Expression |
---|---|
recnz | ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ¬ (1 / 𝐴) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recgt1i 8814 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (0 < (1 / 𝐴) ∧ (1 / 𝐴) < 1)) | |
2 | 1 | simprd 113 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (1 / 𝐴) < 1) |
3 | 1 | simpld 111 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < (1 / 𝐴)) |
4 | zgt0ge1 9270 | . . . 4 ⊢ ((1 / 𝐴) ∈ ℤ → (0 < (1 / 𝐴) ↔ 1 ≤ (1 / 𝐴))) | |
5 | 3, 4 | syl5ibcom 154 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ((1 / 𝐴) ∈ ℤ → 1 ≤ (1 / 𝐴))) |
6 | 1re 7919 | . . . 4 ⊢ 1 ∈ ℝ | |
7 | 0lt1 8046 | . . . . . . . 8 ⊢ 0 < 1 | |
8 | 0re 7920 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
9 | lttr 7993 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐴) → 0 < 𝐴)) | |
10 | 8, 6, 9 | mp3an12 1322 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐴) → 0 < 𝐴)) |
11 | 7, 10 | mpani 428 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (1 < 𝐴 → 0 < 𝐴)) |
12 | 11 | imdistani 443 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
13 | gt0ap0 8545 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 # 0) | |
14 | 12, 13 | syl 14 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 # 0) |
15 | rerecclap 8647 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (1 / 𝐴) ∈ ℝ) | |
16 | 14, 15 | syldan 280 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (1 / 𝐴) ∈ ℝ) |
17 | lenlt 7995 | . . . 4 ⊢ ((1 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (1 ≤ (1 / 𝐴) ↔ ¬ (1 / 𝐴) < 1)) | |
18 | 6, 16, 17 | sylancr 412 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (1 ≤ (1 / 𝐴) ↔ ¬ (1 / 𝐴) < 1)) |
19 | 5, 18 | sylibd 148 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ((1 / 𝐴) ∈ ℤ → ¬ (1 / 𝐴) < 1)) |
20 | 2, 19 | mt2d 620 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ¬ (1 / 𝐴) ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2141 class class class wbr 3989 (class class class)co 5853 ℝcr 7773 0cc0 7774 1c1 7775 < clt 7954 ≤ cle 7955 # cap 8500 / cdiv 8589 ℤcz 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-n0 9136 df-z 9213 |
This theorem is referenced by: halfnz 9308 facndiv 10673 dvdsprmpweqle 12290 |
Copyright terms: Public domain | W3C validator |