ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recnz GIF version

Theorem recnz 9438
Description: The reciprocal of a number greater than 1 is not an integer. (Contributed by NM, 3-May-2005.)
Assertion
Ref Expression
recnz ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ¬ (1 / 𝐴) ∈ ℤ)

Proof of Theorem recnz
StepHypRef Expression
1 recgt1i 8944 . . 3 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (0 < (1 / 𝐴) ∧ (1 / 𝐴) < 1))
21simprd 114 . 2 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (1 / 𝐴) < 1)
31simpld 112 . . . 4 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < (1 / 𝐴))
4 zgt0ge1 9403 . . . 4 ((1 / 𝐴) ∈ ℤ → (0 < (1 / 𝐴) ↔ 1 ≤ (1 / 𝐴)))
53, 4syl5ibcom 155 . . 3 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ((1 / 𝐴) ∈ ℤ → 1 ≤ (1 / 𝐴)))
6 1re 8044 . . . 4 1 ∈ ℝ
7 0lt1 8172 . . . . . . . 8 0 < 1
8 0re 8045 . . . . . . . . 9 0 ∈ ℝ
9 lttr 8119 . . . . . . . . 9 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐴) → 0 < 𝐴))
108, 6, 9mp3an12 1338 . . . . . . . 8 (𝐴 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐴) → 0 < 𝐴))
117, 10mpani 430 . . . . . . 7 (𝐴 ∈ ℝ → (1 < 𝐴 → 0 < 𝐴))
1211imdistani 445 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
13 gt0ap0 8672 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 # 0)
1412, 13syl 14 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 # 0)
15 rerecclap 8776 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (1 / 𝐴) ∈ ℝ)
1614, 15syldan 282 . . . 4 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (1 / 𝐴) ∈ ℝ)
17 lenlt 8121 . . . 4 ((1 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (1 ≤ (1 / 𝐴) ↔ ¬ (1 / 𝐴) < 1))
186, 16, 17sylancr 414 . . 3 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (1 ≤ (1 / 𝐴) ↔ ¬ (1 / 𝐴) < 1))
195, 18sylibd 149 . 2 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ((1 / 𝐴) ∈ ℤ → ¬ (1 / 𝐴) < 1))
202, 19mt2d 626 1 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ¬ (1 / 𝐴) ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wcel 2167   class class class wbr 4034  (class class class)co 5925  cr 7897  0cc0 7898  1c1 7899   < clt 8080  cle 8081   # cap 8627   / cdiv 8718  cz 9345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-n0 9269  df-z 9346
This theorem is referenced by:  halfnz  9441  facndiv  10850  dvdsprmpweqle  12533
  Copyright terms: Public domain W3C validator