![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uznfz | GIF version |
Description: Disjointness of the upper integers and a finite sequence. (Contributed by Mario Carneiro, 24-Aug-2013.) |
Ref | Expression |
---|---|
uznfz | ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → ¬ 𝐾 ∈ (𝑀...(𝑁 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzle 9031 | . 2 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → 𝑁 ≤ 𝐾) | |
2 | eluzel2 9024 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → 𝑁 ∈ ℤ) | |
3 | elfzel1 9439 | . . . . 5 ⊢ (𝐾 ∈ (𝑀...(𝑁 − 1)) → 𝑀 ∈ ℤ) | |
4 | elfzm11 9505 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁))) | |
5 | simp3 945 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁) → 𝐾 < 𝑁) | |
6 | 4, 5 | syl6bi 161 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...(𝑁 − 1)) → 𝐾 < 𝑁)) |
7 | 6 | impancom 256 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ (𝑀...(𝑁 − 1))) → (𝑁 ∈ ℤ → 𝐾 < 𝑁)) |
8 | 3, 7 | mpancom 413 | . . . 4 ⊢ (𝐾 ∈ (𝑀...(𝑁 − 1)) → (𝑁 ∈ ℤ → 𝐾 < 𝑁)) |
9 | 2, 8 | syl5com 29 | . . 3 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → (𝐾 ∈ (𝑀...(𝑁 − 1)) → 𝐾 < 𝑁)) |
10 | eluzelz 9028 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → 𝐾 ∈ ℤ) | |
11 | zltnle 8796 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 ↔ ¬ 𝑁 ≤ 𝐾)) | |
12 | 10, 2, 11 | syl2anc 403 | . . 3 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → (𝐾 < 𝑁 ↔ ¬ 𝑁 ≤ 𝐾)) |
13 | 9, 12 | sylibd 147 | . 2 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → (𝐾 ∈ (𝑀...(𝑁 − 1)) → ¬ 𝑁 ≤ 𝐾)) |
14 | 1, 13 | mt2d 590 | 1 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → ¬ 𝐾 ∈ (𝑀...(𝑁 − 1))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 ∧ w3a 924 ∈ wcel 1438 class class class wbr 3845 ‘cfv 5015 (class class class)co 5652 1c1 7351 < clt 7522 ≤ cle 7523 − cmin 7653 ℤcz 8750 ℤ≥cuz 9019 ...cfz 9424 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-setind 4353 ax-cnex 7436 ax-resscn 7437 ax-1cn 7438 ax-1re 7439 ax-icn 7440 ax-addcl 7441 ax-addrcl 7442 ax-mulcl 7443 ax-addcom 7445 ax-addass 7447 ax-distr 7449 ax-i2m1 7450 ax-0lt1 7451 ax-0id 7453 ax-rnegex 7454 ax-cnre 7456 ax-pre-ltirr 7457 ax-pre-ltwlin 7458 ax-pre-lttrn 7459 ax-pre-ltadd 7461 |
This theorem depends on definitions: df-bi 115 df-3or 925 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-nel 2351 df-ral 2364 df-rex 2365 df-reu 2366 df-rab 2368 df-v 2621 df-sbc 2841 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-int 3689 df-br 3846 df-opab 3900 df-mpt 3901 df-id 4120 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-res 4450 df-ima 4451 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-fv 5023 df-riota 5608 df-ov 5655 df-oprab 5656 df-mpt2 5657 df-pnf 7524 df-mnf 7525 df-xr 7526 df-ltxr 7527 df-le 7528 df-sub 7655 df-neg 7656 df-inn 8423 df-n0 8674 df-z 8751 df-uz 9020 df-fz 9425 |
This theorem is referenced by: isumrblem 10765 |
Copyright terms: Public domain | W3C validator |