ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uznfz GIF version

Theorem uznfz 9580
Description: Disjointness of the upper integers and a finite sequence. (Contributed by Mario Carneiro, 24-Aug-2013.)
Assertion
Ref Expression
uznfz (𝐾 ∈ (ℤ𝑁) → ¬ 𝐾 ∈ (𝑀...(𝑁 − 1)))

Proof of Theorem uznfz
StepHypRef Expression
1 eluzle 9094 . 2 (𝐾 ∈ (ℤ𝑁) → 𝑁𝐾)
2 eluzel2 9087 . . . 4 (𝐾 ∈ (ℤ𝑁) → 𝑁 ∈ ℤ)
3 elfzel1 9502 . . . . 5 (𝐾 ∈ (𝑀...(𝑁 − 1)) → 𝑀 ∈ ℤ)
4 elfzm11 9568 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾 < 𝑁)))
5 simp3 946 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾 < 𝑁) → 𝐾 < 𝑁)
64, 5syl6bi 162 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...(𝑁 − 1)) → 𝐾 < 𝑁))
76impancom 257 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ (𝑀...(𝑁 − 1))) → (𝑁 ∈ ℤ → 𝐾 < 𝑁))
83, 7mpancom 414 . . . 4 (𝐾 ∈ (𝑀...(𝑁 − 1)) → (𝑁 ∈ ℤ → 𝐾 < 𝑁))
92, 8syl5com 29 . . 3 (𝐾 ∈ (ℤ𝑁) → (𝐾 ∈ (𝑀...(𝑁 − 1)) → 𝐾 < 𝑁))
10 eluzelz 9091 . . . 4 (𝐾 ∈ (ℤ𝑁) → 𝐾 ∈ ℤ)
11 zltnle 8859 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 ↔ ¬ 𝑁𝐾))
1210, 2, 11syl2anc 404 . . 3 (𝐾 ∈ (ℤ𝑁) → (𝐾 < 𝑁 ↔ ¬ 𝑁𝐾))
139, 12sylibd 148 . 2 (𝐾 ∈ (ℤ𝑁) → (𝐾 ∈ (𝑀...(𝑁 − 1)) → ¬ 𝑁𝐾))
141, 13mt2d 591 1 (𝐾 ∈ (ℤ𝑁) → ¬ 𝐾 ∈ (𝑀...(𝑁 − 1)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 925  wcel 1439   class class class wbr 3853  cfv 5030  (class class class)co 5668  1c1 7414   < clt 7585  cle 7586  cmin 7716  cz 8813  cuz 9082  ...cfz 9487
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047  ax-un 4271  ax-setind 4368  ax-cnex 7499  ax-resscn 7500  ax-1cn 7501  ax-1re 7502  ax-icn 7503  ax-addcl 7504  ax-addrcl 7505  ax-mulcl 7506  ax-addcom 7508  ax-addass 7510  ax-distr 7512  ax-i2m1 7513  ax-0lt1 7514  ax-0id 7516  ax-rnegex 7517  ax-cnre 7519  ax-pre-ltirr 7520  ax-pre-ltwlin 7521  ax-pre-lttrn 7522  ax-pre-ltadd 7524
This theorem depends on definitions:  df-bi 116  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2624  df-sbc 2844  df-dif 3004  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-int 3697  df-br 3854  df-opab 3908  df-mpt 3909  df-id 4131  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-rn 4465  df-res 4466  df-ima 4467  df-iota 4995  df-fun 5032  df-fn 5033  df-f 5034  df-fv 5038  df-riota 5624  df-ov 5671  df-oprab 5672  df-mpt2 5673  df-pnf 7587  df-mnf 7588  df-xr 7589  df-ltxr 7590  df-le 7591  df-sub 7718  df-neg 7719  df-inn 8486  df-n0 8737  df-z 8814  df-uz 9083  df-fz 9488
This theorem is referenced by:  isumrblem  10828
  Copyright terms: Public domain W3C validator