ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uznfz GIF version

Theorem uznfz 10133
Description: Disjointness of the upper integers and a finite sequence. (Contributed by Mario Carneiro, 24-Aug-2013.)
Assertion
Ref Expression
uznfz (𝐾 ∈ (ℤ𝑁) → ¬ 𝐾 ∈ (𝑀...(𝑁 − 1)))

Proof of Theorem uznfz
StepHypRef Expression
1 eluzle 9570 . 2 (𝐾 ∈ (ℤ𝑁) → 𝑁𝐾)
2 eluzel2 9563 . . . 4 (𝐾 ∈ (ℤ𝑁) → 𝑁 ∈ ℤ)
3 elfzel1 10054 . . . . 5 (𝐾 ∈ (𝑀...(𝑁 − 1)) → 𝑀 ∈ ℤ)
4 elfzm11 10121 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾 < 𝑁)))
5 simp3 1001 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾 < 𝑁) → 𝐾 < 𝑁)
64, 5biimtrdi 163 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...(𝑁 − 1)) → 𝐾 < 𝑁))
76impancom 260 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ (𝑀...(𝑁 − 1))) → (𝑁 ∈ ℤ → 𝐾 < 𝑁))
83, 7mpancom 422 . . . 4 (𝐾 ∈ (𝑀...(𝑁 − 1)) → (𝑁 ∈ ℤ → 𝐾 < 𝑁))
92, 8syl5com 29 . . 3 (𝐾 ∈ (ℤ𝑁) → (𝐾 ∈ (𝑀...(𝑁 − 1)) → 𝐾 < 𝑁))
10 eluzelz 9567 . . . 4 (𝐾 ∈ (ℤ𝑁) → 𝐾 ∈ ℤ)
11 zltnle 9329 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 ↔ ¬ 𝑁𝐾))
1210, 2, 11syl2anc 411 . . 3 (𝐾 ∈ (ℤ𝑁) → (𝐾 < 𝑁 ↔ ¬ 𝑁𝐾))
139, 12sylibd 149 . 2 (𝐾 ∈ (ℤ𝑁) → (𝐾 ∈ (𝑀...(𝑁 − 1)) → ¬ 𝑁𝐾))
141, 13mt2d 626 1 (𝐾 ∈ (ℤ𝑁) → ¬ 𝐾 ∈ (𝑀...(𝑁 − 1)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 980  wcel 2160   class class class wbr 4018  cfv 5235  (class class class)co 5896  1c1 7842   < clt 8022  cle 8023  cmin 8158  cz 9283  cuz 9558  ...cfz 10038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-addcom 7941  ax-addass 7943  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-0id 7949  ax-rnegex 7950  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-ltadd 7957
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-inn 8950  df-n0 9207  df-z 9284  df-uz 9559  df-fz 10039
This theorem is referenced by:  sumrbdclem  11417  prodrbdclem  11611
  Copyright terms: Public domain W3C validator