Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uznfz | GIF version |
Description: Disjointness of the upper integers and a finite sequence. (Contributed by Mario Carneiro, 24-Aug-2013.) |
Ref | Expression |
---|---|
uznfz | ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → ¬ 𝐾 ∈ (𝑀...(𝑁 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzle 9478 | . 2 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → 𝑁 ≤ 𝐾) | |
2 | eluzel2 9471 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → 𝑁 ∈ ℤ) | |
3 | elfzel1 9959 | . . . . 5 ⊢ (𝐾 ∈ (𝑀...(𝑁 − 1)) → 𝑀 ∈ ℤ) | |
4 | elfzm11 10026 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁))) | |
5 | simp3 989 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁) → 𝐾 < 𝑁) | |
6 | 4, 5 | syl6bi 162 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...(𝑁 − 1)) → 𝐾 < 𝑁)) |
7 | 6 | impancom 258 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ (𝑀...(𝑁 − 1))) → (𝑁 ∈ ℤ → 𝐾 < 𝑁)) |
8 | 3, 7 | mpancom 419 | . . . 4 ⊢ (𝐾 ∈ (𝑀...(𝑁 − 1)) → (𝑁 ∈ ℤ → 𝐾 < 𝑁)) |
9 | 2, 8 | syl5com 29 | . . 3 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → (𝐾 ∈ (𝑀...(𝑁 − 1)) → 𝐾 < 𝑁)) |
10 | eluzelz 9475 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → 𝐾 ∈ ℤ) | |
11 | zltnle 9237 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 ↔ ¬ 𝑁 ≤ 𝐾)) | |
12 | 10, 2, 11 | syl2anc 409 | . . 3 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → (𝐾 < 𝑁 ↔ ¬ 𝑁 ≤ 𝐾)) |
13 | 9, 12 | sylibd 148 | . 2 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → (𝐾 ∈ (𝑀...(𝑁 − 1)) → ¬ 𝑁 ≤ 𝐾)) |
14 | 1, 13 | mt2d 615 | 1 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → ¬ 𝐾 ∈ (𝑀...(𝑁 − 1))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 968 ∈ wcel 2136 class class class wbr 3982 ‘cfv 5188 (class class class)co 5842 1c1 7754 < clt 7933 ≤ cle 7934 − cmin 8069 ℤcz 9191 ℤ≥cuz 9466 ...cfz 9944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 |
This theorem is referenced by: sumrbdclem 11318 prodrbdclem 11512 |
Copyright terms: Public domain | W3C validator |