Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uznfz | GIF version |
Description: Disjointness of the upper integers and a finite sequence. (Contributed by Mario Carneiro, 24-Aug-2013.) |
Ref | Expression |
---|---|
uznfz | ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → ¬ 𝐾 ∈ (𝑀...(𝑁 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzle 9486 | . 2 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → 𝑁 ≤ 𝐾) | |
2 | eluzel2 9479 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → 𝑁 ∈ ℤ) | |
3 | elfzel1 9967 | . . . . 5 ⊢ (𝐾 ∈ (𝑀...(𝑁 − 1)) → 𝑀 ∈ ℤ) | |
4 | elfzm11 10034 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁))) | |
5 | simp3 994 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁) → 𝐾 < 𝑁) | |
6 | 4, 5 | syl6bi 162 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...(𝑁 − 1)) → 𝐾 < 𝑁)) |
7 | 6 | impancom 258 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ (𝑀...(𝑁 − 1))) → (𝑁 ∈ ℤ → 𝐾 < 𝑁)) |
8 | 3, 7 | mpancom 420 | . . . 4 ⊢ (𝐾 ∈ (𝑀...(𝑁 − 1)) → (𝑁 ∈ ℤ → 𝐾 < 𝑁)) |
9 | 2, 8 | syl5com 29 | . . 3 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → (𝐾 ∈ (𝑀...(𝑁 − 1)) → 𝐾 < 𝑁)) |
10 | eluzelz 9483 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → 𝐾 ∈ ℤ) | |
11 | zltnle 9245 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 ↔ ¬ 𝑁 ≤ 𝐾)) | |
12 | 10, 2, 11 | syl2anc 409 | . . 3 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → (𝐾 < 𝑁 ↔ ¬ 𝑁 ≤ 𝐾)) |
13 | 9, 12 | sylibd 148 | . 2 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → (𝐾 ∈ (𝑀...(𝑁 − 1)) → ¬ 𝑁 ≤ 𝐾)) |
14 | 1, 13 | mt2d 620 | 1 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → ¬ 𝐾 ∈ (𝑀...(𝑁 − 1))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 973 ∈ wcel 2141 class class class wbr 3987 ‘cfv 5196 (class class class)co 5850 1c1 7762 < clt 7941 ≤ cle 7942 − cmin 8077 ℤcz 9199 ℤ≥cuz 9474 ...cfz 9952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-addcom 7861 ax-addass 7863 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-0id 7869 ax-rnegex 7870 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-ltadd 7877 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-inn 8866 df-n0 9123 df-z 9200 df-uz 9475 df-fz 9953 |
This theorem is referenced by: sumrbdclem 11327 prodrbdclem 11521 |
Copyright terms: Public domain | W3C validator |