ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcadd GIF version

Theorem pcadd 12478
Description: An inequality for the prime count of a sum. This is the source of the ultrametric inequality for the p-adic metric. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
pcadd.1 (𝜑𝑃 ∈ ℙ)
pcadd.2 (𝜑𝐴 ∈ ℚ)
pcadd.3 (𝜑𝐵 ∈ ℚ)
pcadd.4 (𝜑 → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))
Assertion
Ref Expression
pcadd (𝜑 → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵)))

Proof of Theorem pcadd
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcadd.2 . . 3 (𝜑𝐴 ∈ ℚ)
2 elq 9687 . . 3 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
31, 2sylib 122 . 2 (𝜑 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
4 pcadd.3 . . 3 (𝜑𝐵 ∈ ℚ)
5 elq 9687 . . 3 (𝐵 ∈ ℚ ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤))
64, 5sylib 122 . 2 (𝜑 → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤))
7 pcadd.1 . . . . . . . 8 (𝜑𝑃 ∈ ℙ)
8 pcxcl 12449 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑃 pCnt 𝐴) ∈ ℝ*)
97, 1, 8syl2anc 411 . . . . . . 7 (𝜑 → (𝑃 pCnt 𝐴) ∈ ℝ*)
109xrleidd 9867 . . . . . 6 (𝜑 → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐴))
1110adantr 276 . . . . 5 ((𝜑𝐵 = 0) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐴))
12 oveq2 5926 . . . . . . 7 (𝐵 = 0 → (𝐴 + 𝐵) = (𝐴 + 0))
13 qcn 9699 . . . . . . . . 9 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
141, 13syl 14 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1514addridd 8168 . . . . . . 7 (𝜑 → (𝐴 + 0) = 𝐴)
1612, 15sylan9eqr 2248 . . . . . 6 ((𝜑𝐵 = 0) → (𝐴 + 𝐵) = 𝐴)
1716oveq2d 5934 . . . . 5 ((𝜑𝐵 = 0) → (𝑃 pCnt (𝐴 + 𝐵)) = (𝑃 pCnt 𝐴))
1811, 17breqtrrd 4057 . . . 4 ((𝜑𝐵 = 0) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵)))
1918a1d 22 . . 3 ((𝜑𝐵 = 0) → ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵))))
20 reeanv 2664 . . . 4 (∃𝑥 ∈ ℤ ∃𝑧 ∈ ℤ (∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) ↔ (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)))
21 reeanv 2664 . . . . . 6 (∃𝑦 ∈ ℕ ∃𝑤 ∈ ℕ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) ↔ (∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)))
227ad3antrrr 492 . . . . . . . . 9 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑃 ∈ ℙ)
23 prmnn 12248 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2422, 23syl 14 . . . . . . . . . . . . . . . 16 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑃 ∈ ℕ)
25 simplrl 535 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑥 ∈ ℤ)
26 simprrl 539 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝐴 = (𝑥 / 𝑦))
27 pc0 12442 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℙ → (𝑃 pCnt 0) = +∞)
2822, 27syl 14 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 0) = +∞)
294ad3antrrr 492 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝐵 ∈ ℚ)
30 simpllr 534 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝐵 ≠ 0)
31 pcqcl 12444 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃 ∈ ℙ ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐵) ∈ ℤ)
3222, 29, 30, 31syl12anc 1247 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝐵) ∈ ℤ)
3332zred 9439 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝐵) ∈ ℝ)
3433ltpnfd 9847 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝐵) < +∞)
35 pnfxr 8072 . . . . . . . . . . . . . . . . . . . . . . . 24 +∞ ∈ ℝ*
3633rexrd 8069 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝐵) ∈ ℝ*)
37 xrlenlt 8084 . . . . . . . . . . . . . . . . . . . . . . . 24 ((+∞ ∈ ℝ* ∧ (𝑃 pCnt 𝐵) ∈ ℝ*) → (+∞ ≤ (𝑃 pCnt 𝐵) ↔ ¬ (𝑃 pCnt 𝐵) < +∞))
3835, 36, 37sylancr 414 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (+∞ ≤ (𝑃 pCnt 𝐵) ↔ ¬ (𝑃 pCnt 𝐵) < +∞))
3938biimpd 144 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (+∞ ≤ (𝑃 pCnt 𝐵) → ¬ (𝑃 pCnt 𝐵) < +∞))
4034, 39mt2d 626 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ¬ +∞ ≤ (𝑃 pCnt 𝐵))
4128, 40eqnbrtrd 4047 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ¬ (𝑃 pCnt 0) ≤ (𝑃 pCnt 𝐵))
42 pcadd.4 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))
4342ad3antrrr 492 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))
44 oveq2 5926 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 = 0 → (𝑃 pCnt 𝐴) = (𝑃 pCnt 0))
4544breq1d 4039 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 = 0 → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ↔ (𝑃 pCnt 0) ≤ (𝑃 pCnt 𝐵)))
4643, 45syl5ibcom 155 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝐴 = 0 → (𝑃 pCnt 0) ≤ (𝑃 pCnt 𝐵)))
4746necon3bd 2407 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (¬ (𝑃 pCnt 0) ≤ (𝑃 pCnt 𝐵) → 𝐴 ≠ 0))
4841, 47mpd 13 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝐴 ≠ 0)
4926, 48eqnetrrd 2390 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑥 / 𝑦) ≠ 0)
50 simprll 537 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑦 ∈ ℕ)
5150nncnd 8996 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑦 ∈ ℂ)
5250nnap0d 9028 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑦 # 0)
5351, 52div0apd 8806 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (0 / 𝑦) = 0)
54 oveq1 5925 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 0 → (𝑥 / 𝑦) = (0 / 𝑦))
5554eqeq1d 2202 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → ((𝑥 / 𝑦) = 0 ↔ (0 / 𝑦) = 0))
5653, 55syl5ibrcom 157 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑥 = 0 → (𝑥 / 𝑦) = 0))
5756necon3d 2408 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑥 / 𝑦) ≠ 0 → 𝑥 ≠ 0))
5849, 57mpd 13 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑥 ≠ 0)
59 pczcl 12436 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑃 pCnt 𝑥) ∈ ℕ0)
6022, 25, 58, 59syl12anc 1247 . . . . . . . . . . . . . . . 16 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝑥) ∈ ℕ0)
6124, 60nnexpcld 10766 . . . . . . . . . . . . . . 15 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑥)) ∈ ℕ)
6261nncnd 8996 . . . . . . . . . . . . . 14 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑥)) ∈ ℂ)
6362, 51mulcomd 8041 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝑥)) · 𝑦) = (𝑦 · (𝑃↑(𝑃 pCnt 𝑥))))
6463oveq2d 5934 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑥 · (𝑃↑(𝑃 pCnt 𝑦))) / ((𝑃↑(𝑃 pCnt 𝑥)) · 𝑦)) = ((𝑥 · (𝑃↑(𝑃 pCnt 𝑦))) / (𝑦 · (𝑃↑(𝑃 pCnt 𝑥)))))
6525zcnd 9440 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑥 ∈ ℂ)
6661nnap0d 9028 . . . . . . . . . . . . . 14 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑥)) # 0)
6762, 66jca 306 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝑥)) ∈ ℂ ∧ (𝑃↑(𝑃 pCnt 𝑥)) # 0))
6851, 52jca 306 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑦 ∈ ℂ ∧ 𝑦 # 0))
6922, 50pccld 12438 . . . . . . . . . . . . . . . 16 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝑦) ∈ ℕ0)
7024, 69nnexpcld 10766 . . . . . . . . . . . . . . 15 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑦)) ∈ ℕ)
7170nncnd 8996 . . . . . . . . . . . . . 14 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑦)) ∈ ℂ)
7270nnap0d 9028 . . . . . . . . . . . . . 14 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑦)) # 0)
7371, 72jca 306 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝑦)) ∈ ℂ ∧ (𝑃↑(𝑃 pCnt 𝑦)) # 0))
74 divdivdivap 8732 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ ((𝑃↑(𝑃 pCnt 𝑥)) ∈ ℂ ∧ (𝑃↑(𝑃 pCnt 𝑥)) # 0)) ∧ ((𝑦 ∈ ℂ ∧ 𝑦 # 0) ∧ ((𝑃↑(𝑃 pCnt 𝑦)) ∈ ℂ ∧ (𝑃↑(𝑃 pCnt 𝑦)) # 0))) → ((𝑥 / (𝑃↑(𝑃 pCnt 𝑥))) / (𝑦 / (𝑃↑(𝑃 pCnt 𝑦)))) = ((𝑥 · (𝑃↑(𝑃 pCnt 𝑦))) / ((𝑃↑(𝑃 pCnt 𝑥)) · 𝑦)))
7565, 67, 68, 73, 74syl22anc 1250 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑥 / (𝑃↑(𝑃 pCnt 𝑥))) / (𝑦 / (𝑃↑(𝑃 pCnt 𝑦)))) = ((𝑥 · (𝑃↑(𝑃 pCnt 𝑦))) / ((𝑃↑(𝑃 pCnt 𝑥)) · 𝑦)))
7626oveq2d 5934 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝐴) = (𝑃 pCnt (𝑥 / 𝑦)))
77 pcdiv 12440 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝑥 / 𝑦)) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)))
7822, 25, 58, 50, 77syl121anc 1254 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt (𝑥 / 𝑦)) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)))
7976, 78eqtrd 2226 . . . . . . . . . . . . . . . 16 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝐴) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)))
8079oveq2d 5934 . . . . . . . . . . . . . . 15 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝐴)) = (𝑃↑((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦))))
8124nncnd 8996 . . . . . . . . . . . . . . . 16 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑃 ∈ ℂ)
8224nnap0d 9028 . . . . . . . . . . . . . . . 16 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑃 # 0)
8369nn0zd 9437 . . . . . . . . . . . . . . . 16 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝑦) ∈ ℤ)
8460nn0zd 9437 . . . . . . . . . . . . . . . 16 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝑥) ∈ ℤ)
8581, 82, 83, 84expsubapd 10755 . . . . . . . . . . . . . . 15 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦))) = ((𝑃↑(𝑃 pCnt 𝑥)) / (𝑃↑(𝑃 pCnt 𝑦))))
8680, 85eqtrd 2226 . . . . . . . . . . . . . 14 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝐴)) = ((𝑃↑(𝑃 pCnt 𝑥)) / (𝑃↑(𝑃 pCnt 𝑦))))
8786oveq2d 5934 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) = (𝐴 / ((𝑃↑(𝑃 pCnt 𝑥)) / (𝑃↑(𝑃 pCnt 𝑦)))))
8826oveq1d 5933 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝐴 / ((𝑃↑(𝑃 pCnt 𝑥)) / (𝑃↑(𝑃 pCnt 𝑦)))) = ((𝑥 / 𝑦) / ((𝑃↑(𝑃 pCnt 𝑥)) / (𝑃↑(𝑃 pCnt 𝑦)))))
89 divdivdivap 8732 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) ∧ (((𝑃↑(𝑃 pCnt 𝑥)) ∈ ℂ ∧ (𝑃↑(𝑃 pCnt 𝑥)) # 0) ∧ ((𝑃↑(𝑃 pCnt 𝑦)) ∈ ℂ ∧ (𝑃↑(𝑃 pCnt 𝑦)) # 0))) → ((𝑥 / 𝑦) / ((𝑃↑(𝑃 pCnt 𝑥)) / (𝑃↑(𝑃 pCnt 𝑦)))) = ((𝑥 · (𝑃↑(𝑃 pCnt 𝑦))) / (𝑦 · (𝑃↑(𝑃 pCnt 𝑥)))))
9065, 68, 67, 73, 89syl22anc 1250 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑥 / 𝑦) / ((𝑃↑(𝑃 pCnt 𝑥)) / (𝑃↑(𝑃 pCnt 𝑦)))) = ((𝑥 · (𝑃↑(𝑃 pCnt 𝑦))) / (𝑦 · (𝑃↑(𝑃 pCnt 𝑥)))))
9187, 88, 903eqtrd 2230 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) = ((𝑥 · (𝑃↑(𝑃 pCnt 𝑦))) / (𝑦 · (𝑃↑(𝑃 pCnt 𝑥)))))
9264, 75, 913eqtr4d 2236 . . . . . . . . . . 11 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑥 / (𝑃↑(𝑃 pCnt 𝑥))) / (𝑦 / (𝑃↑(𝑃 pCnt 𝑦)))) = (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))
9392oveq2d 5934 . . . . . . . . . 10 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝐴)) · ((𝑥 / (𝑃↑(𝑃 pCnt 𝑥))) / (𝑦 / (𝑃↑(𝑃 pCnt 𝑦))))) = ((𝑃↑(𝑃 pCnt 𝐴)) · (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
941ad3antrrr 492 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝐴 ∈ ℚ)
9594, 13syl 14 . . . . . . . . . . 11 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝐴 ∈ ℂ)
96 pcqcl 12444 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℤ)
9722, 94, 48, 96syl12anc 1247 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝐴) ∈ ℤ)
9881, 82, 97expclzapd 10749 . . . . . . . . . . 11 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℂ)
9981, 82, 97expap0d 10750 . . . . . . . . . . 11 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝐴)) # 0)
10095, 98, 99divcanap2d 8811 . . . . . . . . . 10 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝐴)) · (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 𝐴)
10193, 100eqtr2d 2227 . . . . . . . . 9 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝐴 = ((𝑃↑(𝑃 pCnt 𝐴)) · ((𝑥 / (𝑃↑(𝑃 pCnt 𝑥))) / (𝑦 / (𝑃↑(𝑃 pCnt 𝑦))))))
102 simplrr 536 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑧 ∈ ℤ)
103 simprrr 540 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝐵 = (𝑧 / 𝑤))
104103, 30eqnetrrd 2390 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑧 / 𝑤) ≠ 0)
105 simprlr 538 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑤 ∈ ℕ)
106105nncnd 8996 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑤 ∈ ℂ)
107105nnap0d 9028 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑤 # 0)
108106, 107div0apd 8806 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (0 / 𝑤) = 0)
109 oveq1 5925 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 0 → (𝑧 / 𝑤) = (0 / 𝑤))
110109eqeq1d 2202 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 0 → ((𝑧 / 𝑤) = 0 ↔ (0 / 𝑤) = 0))
111108, 110syl5ibrcom 157 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑧 = 0 → (𝑧 / 𝑤) = 0))
112111necon3d 2408 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑧 / 𝑤) ≠ 0 → 𝑧 ≠ 0))
113104, 112mpd 13 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑧 ≠ 0)
114 pczcl 12436 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt 𝑧) ∈ ℕ0)
11522, 102, 113, 114syl12anc 1247 . . . . . . . . . . . . . . . 16 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝑧) ∈ ℕ0)
11624, 115nnexpcld 10766 . . . . . . . . . . . . . . 15 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑧)) ∈ ℕ)
117116nncnd 8996 . . . . . . . . . . . . . 14 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑧)) ∈ ℂ)
118117, 106mulcomd 8041 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝑧)) · 𝑤) = (𝑤 · (𝑃↑(𝑃 pCnt 𝑧))))
119118oveq2d 5934 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑧 · (𝑃↑(𝑃 pCnt 𝑤))) / ((𝑃↑(𝑃 pCnt 𝑧)) · 𝑤)) = ((𝑧 · (𝑃↑(𝑃 pCnt 𝑤))) / (𝑤 · (𝑃↑(𝑃 pCnt 𝑧)))))
120102zcnd 9440 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑧 ∈ ℂ)
121116nnap0d 9028 . . . . . . . . . . . . . 14 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑧)) # 0)
122117, 121jca 306 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝑧)) ∈ ℂ ∧ (𝑃↑(𝑃 pCnt 𝑧)) # 0))
123106, 107jca 306 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑤 ∈ ℂ ∧ 𝑤 # 0))
12422, 105pccld 12438 . . . . . . . . . . . . . . . 16 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝑤) ∈ ℕ0)
12524, 124nnexpcld 10766 . . . . . . . . . . . . . . 15 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑤)) ∈ ℕ)
126125nncnd 8996 . . . . . . . . . . . . . 14 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑤)) ∈ ℂ)
127125nnap0d 9028 . . . . . . . . . . . . . 14 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑤)) # 0)
128126, 127jca 306 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝑤)) ∈ ℂ ∧ (𝑃↑(𝑃 pCnt 𝑤)) # 0))
129 divdivdivap 8732 . . . . . . . . . . . . 13 (((𝑧 ∈ ℂ ∧ ((𝑃↑(𝑃 pCnt 𝑧)) ∈ ℂ ∧ (𝑃↑(𝑃 pCnt 𝑧)) # 0)) ∧ ((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ ((𝑃↑(𝑃 pCnt 𝑤)) ∈ ℂ ∧ (𝑃↑(𝑃 pCnt 𝑤)) # 0))) → ((𝑧 / (𝑃↑(𝑃 pCnt 𝑧))) / (𝑤 / (𝑃↑(𝑃 pCnt 𝑤)))) = ((𝑧 · (𝑃↑(𝑃 pCnt 𝑤))) / ((𝑃↑(𝑃 pCnt 𝑧)) · 𝑤)))
130120, 122, 123, 128, 129syl22anc 1250 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑧 / (𝑃↑(𝑃 pCnt 𝑧))) / (𝑤 / (𝑃↑(𝑃 pCnt 𝑤)))) = ((𝑧 · (𝑃↑(𝑃 pCnt 𝑤))) / ((𝑃↑(𝑃 pCnt 𝑧)) · 𝑤)))
131103oveq2d 5934 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝐵) = (𝑃 pCnt (𝑧 / 𝑤)))
132 pcdiv 12440 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑧 ≠ 0) ∧ 𝑤 ∈ ℕ) → (𝑃 pCnt (𝑧 / 𝑤)) = ((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤)))
13322, 102, 113, 105, 132syl121anc 1254 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt (𝑧 / 𝑤)) = ((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤)))
134131, 133eqtrd 2226 . . . . . . . . . . . . . . . 16 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝐵) = ((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤)))
135134oveq2d 5934 . . . . . . . . . . . . . . 15 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝐵)) = (𝑃↑((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤))))
136124nn0zd 9437 . . . . . . . . . . . . . . . 16 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝑤) ∈ ℤ)
137115nn0zd 9437 . . . . . . . . . . . . . . . 16 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝑧) ∈ ℤ)
13881, 82, 136, 137expsubapd 10755 . . . . . . . . . . . . . . 15 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤))) = ((𝑃↑(𝑃 pCnt 𝑧)) / (𝑃↑(𝑃 pCnt 𝑤))))
139135, 138eqtrd 2226 . . . . . . . . . . . . . 14 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝐵)) = ((𝑃↑(𝑃 pCnt 𝑧)) / (𝑃↑(𝑃 pCnt 𝑤))))
140139oveq2d 5934 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝐵 / (𝑃↑(𝑃 pCnt 𝐵))) = (𝐵 / ((𝑃↑(𝑃 pCnt 𝑧)) / (𝑃↑(𝑃 pCnt 𝑤)))))
141103oveq1d 5933 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝐵 / ((𝑃↑(𝑃 pCnt 𝑧)) / (𝑃↑(𝑃 pCnt 𝑤)))) = ((𝑧 / 𝑤) / ((𝑃↑(𝑃 pCnt 𝑧)) / (𝑃↑(𝑃 pCnt 𝑤)))))
142 divdivdivap 8732 . . . . . . . . . . . . . 14 (((𝑧 ∈ ℂ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) ∧ (((𝑃↑(𝑃 pCnt 𝑧)) ∈ ℂ ∧ (𝑃↑(𝑃 pCnt 𝑧)) # 0) ∧ ((𝑃↑(𝑃 pCnt 𝑤)) ∈ ℂ ∧ (𝑃↑(𝑃 pCnt 𝑤)) # 0))) → ((𝑧 / 𝑤) / ((𝑃↑(𝑃 pCnt 𝑧)) / (𝑃↑(𝑃 pCnt 𝑤)))) = ((𝑧 · (𝑃↑(𝑃 pCnt 𝑤))) / (𝑤 · (𝑃↑(𝑃 pCnt 𝑧)))))
143120, 123, 122, 128, 142syl22anc 1250 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑧 / 𝑤) / ((𝑃↑(𝑃 pCnt 𝑧)) / (𝑃↑(𝑃 pCnt 𝑤)))) = ((𝑧 · (𝑃↑(𝑃 pCnt 𝑤))) / (𝑤 · (𝑃↑(𝑃 pCnt 𝑧)))))
144140, 141, 1433eqtrd 2230 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝐵 / (𝑃↑(𝑃 pCnt 𝐵))) = ((𝑧 · (𝑃↑(𝑃 pCnt 𝑤))) / (𝑤 · (𝑃↑(𝑃 pCnt 𝑧)))))
145119, 130, 1443eqtr4d 2236 . . . . . . . . . . 11 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑧 / (𝑃↑(𝑃 pCnt 𝑧))) / (𝑤 / (𝑃↑(𝑃 pCnt 𝑤)))) = (𝐵 / (𝑃↑(𝑃 pCnt 𝐵))))
146145oveq2d 5934 . . . . . . . . . 10 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝐵)) · ((𝑧 / (𝑃↑(𝑃 pCnt 𝑧))) / (𝑤 / (𝑃↑(𝑃 pCnt 𝑤))))) = ((𝑃↑(𝑃 pCnt 𝐵)) · (𝐵 / (𝑃↑(𝑃 pCnt 𝐵)))))
147 qcn 9699 . . . . . . . . . . . 12 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
14829, 147syl 14 . . . . . . . . . . 11 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝐵 ∈ ℂ)
14981, 82, 32expclzapd 10749 . . . . . . . . . . 11 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝐵)) ∈ ℂ)
15081, 82, 32expap0d 10750 . . . . . . . . . . 11 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝐵)) # 0)
151148, 149, 150divcanap2d 8811 . . . . . . . . . 10 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝐵)) · (𝐵 / (𝑃↑(𝑃 pCnt 𝐵)))) = 𝐵)
152146, 151eqtr2d 2227 . . . . . . . . 9 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝐵 = ((𝑃↑(𝑃 pCnt 𝐵)) · ((𝑧 / (𝑃↑(𝑃 pCnt 𝑧))) / (𝑤 / (𝑃↑(𝑃 pCnt 𝑤))))))
153 eluz 9605 . . . . . . . . . . 11 (((𝑃 pCnt 𝐴) ∈ ℤ ∧ (𝑃 pCnt 𝐵) ∈ ℤ) → ((𝑃 pCnt 𝐵) ∈ (ℤ‘(𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)))
15497, 32, 153syl2anc 411 . . . . . . . . . 10 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃 pCnt 𝐵) ∈ (ℤ‘(𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)))
15543, 154mpbird 167 . . . . . . . . 9 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝐵) ∈ (ℤ‘(𝑃 pCnt 𝐴)))
156 pczdvds 12452 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝑥)) ∥ 𝑥)
15722, 25, 58, 156syl12anc 1247 . . . . . . . . . . 11 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑥)) ∥ 𝑥)
15861nnzd 9438 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑥)) ∈ ℤ)
15961nnne0d 9027 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑥)) ≠ 0)
160 dvdsval2 11933 . . . . . . . . . . . 12 (((𝑃↑(𝑃 pCnt 𝑥)) ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝑥)) ≠ 0 ∧ 𝑥 ∈ ℤ) → ((𝑃↑(𝑃 pCnt 𝑥)) ∥ 𝑥 ↔ (𝑥 / (𝑃↑(𝑃 pCnt 𝑥))) ∈ ℤ))
161158, 159, 25, 160syl3anc 1249 . . . . . . . . . . 11 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝑥)) ∥ 𝑥 ↔ (𝑥 / (𝑃↑(𝑃 pCnt 𝑥))) ∈ ℤ))
162157, 161mpbid 147 . . . . . . . . . 10 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑥 / (𝑃↑(𝑃 pCnt 𝑥))) ∈ ℤ)
163 pczndvds2 12456 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → ¬ 𝑃 ∥ (𝑥 / (𝑃↑(𝑃 pCnt 𝑥))))
16422, 25, 58, 163syl12anc 1247 . . . . . . . . . 10 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ¬ 𝑃 ∥ (𝑥 / (𝑃↑(𝑃 pCnt 𝑥))))
165162, 164jca 306 . . . . . . . . 9 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑥 / (𝑃↑(𝑃 pCnt 𝑥))) ∈ ℤ ∧ ¬ 𝑃 ∥ (𝑥 / (𝑃↑(𝑃 pCnt 𝑥)))))
166 pcdvds 12453 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝑦)) ∥ 𝑦)
16722, 50, 166syl2anc 411 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑦)) ∥ 𝑦)
16870nnzd 9438 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑦)) ∈ ℤ)
16970nnne0d 9027 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑦)) ≠ 0)
17050nnzd 9438 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑦 ∈ ℤ)
171 dvdsval2 11933 . . . . . . . . . . . . 13 (((𝑃↑(𝑃 pCnt 𝑦)) ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝑦)) ≠ 0 ∧ 𝑦 ∈ ℤ) → ((𝑃↑(𝑃 pCnt 𝑦)) ∥ 𝑦 ↔ (𝑦 / (𝑃↑(𝑃 pCnt 𝑦))) ∈ ℤ))
172168, 169, 170, 171syl3anc 1249 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝑦)) ∥ 𝑦 ↔ (𝑦 / (𝑃↑(𝑃 pCnt 𝑦))) ∈ ℤ))
173167, 172mpbid 147 . . . . . . . . . . 11 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑦 / (𝑃↑(𝑃 pCnt 𝑦))) ∈ ℤ)
17450nnred 8995 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑦 ∈ ℝ)
17570nnred 8995 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑦)) ∈ ℝ)
17650nngt0d 9026 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 0 < 𝑦)
17770nngt0d 9026 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 0 < (𝑃↑(𝑃 pCnt 𝑦)))
178174, 175, 176, 177divgt0d 8954 . . . . . . . . . . 11 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 0 < (𝑦 / (𝑃↑(𝑃 pCnt 𝑦))))
179 elnnz 9327 . . . . . . . . . . 11 ((𝑦 / (𝑃↑(𝑃 pCnt 𝑦))) ∈ ℕ ↔ ((𝑦 / (𝑃↑(𝑃 pCnt 𝑦))) ∈ ℤ ∧ 0 < (𝑦 / (𝑃↑(𝑃 pCnt 𝑦)))))
180173, 178, 179sylanbrc 417 . . . . . . . . . 10 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑦 / (𝑃↑(𝑃 pCnt 𝑦))) ∈ ℕ)
181 pcndvds2 12457 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ ℕ) → ¬ 𝑃 ∥ (𝑦 / (𝑃↑(𝑃 pCnt 𝑦))))
18222, 50, 181syl2anc 411 . . . . . . . . . 10 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ¬ 𝑃 ∥ (𝑦 / (𝑃↑(𝑃 pCnt 𝑦))))
183180, 182jca 306 . . . . . . . . 9 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑦 / (𝑃↑(𝑃 pCnt 𝑦))) ∈ ℕ ∧ ¬ 𝑃 ∥ (𝑦 / (𝑃↑(𝑃 pCnt 𝑦)))))
184 pczdvds 12452 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑧 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝑧)) ∥ 𝑧)
18522, 102, 113, 184syl12anc 1247 . . . . . . . . . . 11 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑧)) ∥ 𝑧)
186116nnzd 9438 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑧)) ∈ ℤ)
187116nnne0d 9027 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑧)) ≠ 0)
188 dvdsval2 11933 . . . . . . . . . . . 12 (((𝑃↑(𝑃 pCnt 𝑧)) ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝑧)) ≠ 0 ∧ 𝑧 ∈ ℤ) → ((𝑃↑(𝑃 pCnt 𝑧)) ∥ 𝑧 ↔ (𝑧 / (𝑃↑(𝑃 pCnt 𝑧))) ∈ ℤ))
189186, 187, 102, 188syl3anc 1249 . . . . . . . . . . 11 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝑧)) ∥ 𝑧 ↔ (𝑧 / (𝑃↑(𝑃 pCnt 𝑧))) ∈ ℤ))
190185, 189mpbid 147 . . . . . . . . . 10 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑧 / (𝑃↑(𝑃 pCnt 𝑧))) ∈ ℤ)
191 pczndvds2 12456 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑧 ≠ 0)) → ¬ 𝑃 ∥ (𝑧 / (𝑃↑(𝑃 pCnt 𝑧))))
19222, 102, 113, 191syl12anc 1247 . . . . . . . . . 10 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ¬ 𝑃 ∥ (𝑧 / (𝑃↑(𝑃 pCnt 𝑧))))
193190, 192jca 306 . . . . . . . . 9 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑧 / (𝑃↑(𝑃 pCnt 𝑧))) ∈ ℤ ∧ ¬ 𝑃 ∥ (𝑧 / (𝑃↑(𝑃 pCnt 𝑧)))))
194 pcdvds 12453 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑤 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝑤)) ∥ 𝑤)
19522, 105, 194syl2anc 411 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑤)) ∥ 𝑤)
196125nnzd 9438 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑤)) ∈ ℤ)
197125nnne0d 9027 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑤)) ≠ 0)
198105nnzd 9438 . . . . . . . . . . . . 13 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑤 ∈ ℤ)
199 dvdsval2 11933 . . . . . . . . . . . . 13 (((𝑃↑(𝑃 pCnt 𝑤)) ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝑤)) ≠ 0 ∧ 𝑤 ∈ ℤ) → ((𝑃↑(𝑃 pCnt 𝑤)) ∥ 𝑤 ↔ (𝑤 / (𝑃↑(𝑃 pCnt 𝑤))) ∈ ℤ))
200196, 197, 198, 199syl3anc 1249 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝑤)) ∥ 𝑤 ↔ (𝑤 / (𝑃↑(𝑃 pCnt 𝑤))) ∈ ℤ))
201195, 200mpbid 147 . . . . . . . . . . 11 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑤 / (𝑃↑(𝑃 pCnt 𝑤))) ∈ ℤ)
202105nnred 8995 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑤 ∈ ℝ)
203125nnred 8995 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑤)) ∈ ℝ)
204105nngt0d 9026 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 0 < 𝑤)
205125nngt0d 9026 . . . . . . . . . . . 12 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 0 < (𝑃↑(𝑃 pCnt 𝑤)))
206202, 203, 204, 205divgt0d 8954 . . . . . . . . . . 11 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 0 < (𝑤 / (𝑃↑(𝑃 pCnt 𝑤))))
207 elnnz 9327 . . . . . . . . . . 11 ((𝑤 / (𝑃↑(𝑃 pCnt 𝑤))) ∈ ℕ ↔ ((𝑤 / (𝑃↑(𝑃 pCnt 𝑤))) ∈ ℤ ∧ 0 < (𝑤 / (𝑃↑(𝑃 pCnt 𝑤)))))
208201, 206, 207sylanbrc 417 . . . . . . . . . 10 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑤 / (𝑃↑(𝑃 pCnt 𝑤))) ∈ ℕ)
209 pcndvds2 12457 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑤 ∈ ℕ) → ¬ 𝑃 ∥ (𝑤 / (𝑃↑(𝑃 pCnt 𝑤))))
21022, 105, 209syl2anc 411 . . . . . . . . . 10 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ¬ 𝑃 ∥ (𝑤 / (𝑃↑(𝑃 pCnt 𝑤))))
211208, 210jca 306 . . . . . . . . 9 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑤 / (𝑃↑(𝑃 pCnt 𝑤))) ∈ ℕ ∧ ¬ 𝑃 ∥ (𝑤 / (𝑃↑(𝑃 pCnt 𝑤)))))
21222, 101, 152, 155, 165, 183, 193, 211pcaddlem 12477 . . . . . . . 8 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵)))
213212expr 375 . . . . . . 7 ((((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵))))
214213rexlimdvva 2619 . . . . . 6 (((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (∃𝑦 ∈ ℕ ∃𝑤 ∈ ℕ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵))))
21521, 214biimtrrid 153 . . . . 5 (((𝜑𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵))))
216215rexlimdvva 2619 . . . 4 ((𝜑𝐵 ≠ 0) → (∃𝑥 ∈ ℤ ∃𝑧 ∈ ℤ (∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵))))
21720, 216biimtrrid 153 . . 3 ((𝜑𝐵 ≠ 0) → ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵))))
218 0z 9328 . . . . . 6 0 ∈ ℤ
219 zq 9691 . . . . . 6 (0 ∈ ℤ → 0 ∈ ℚ)
220218, 219mp1i 10 . . . . 5 (𝜑 → 0 ∈ ℚ)
221 qdceq 10314 . . . . 5 ((𝐵 ∈ ℚ ∧ 0 ∈ ℚ) → DECID 𝐵 = 0)
2224, 220, 221syl2anc 411 . . . 4 (𝜑DECID 𝐵 = 0)
223 dcne 2375 . . . 4 (DECID 𝐵 = 0 ↔ (𝐵 = 0 ∨ 𝐵 ≠ 0))
224222, 223sylib 122 . . 3 (𝜑 → (𝐵 = 0 ∨ 𝐵 ≠ 0))
22519, 217, 224mpjaodan 799 . 2 (𝜑 → ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵))))
2263, 6, 225mp2and 433 1 (𝜑 → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wcel 2164  wne 2364  wrex 2473   class class class wbr 4029  cfv 5254  (class class class)co 5918  cc 7870  0cc0 7872   + caddc 7875   · cmul 7877  +∞cpnf 8051  *cxr 8053   < clt 8054  cle 8055  cmin 8190   # cap 8600   / cdiv 8691  cn 8982  0cn0 9240  cz 9317  cuz 9592  cq 9684  cexp 10609  cdvds 11930  cprime 12245   pCnt cpc 12422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-2o 6470  df-er 6587  df-en 6795  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-gcd 12080  df-prm 12246  df-pc 12423
This theorem is referenced by:  pcadd2  12479
  Copyright terms: Public domain W3C validator