Step | Hyp | Ref
| Expression |
1 | | pcadd.2 |
. . 3
⊢ (𝜑 → 𝐴 ∈ ℚ) |
2 | | elq 9581 |
. . 3
⊢ (𝐴 ∈ ℚ ↔
∃𝑥 ∈ ℤ
∃𝑦 ∈ ℕ
𝐴 = (𝑥 / 𝑦)) |
3 | 1, 2 | sylib 121 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) |
4 | | pcadd.3 |
. . 3
⊢ (𝜑 → 𝐵 ∈ ℚ) |
5 | | elq 9581 |
. . 3
⊢ (𝐵 ∈ ℚ ↔
∃𝑧 ∈ ℤ
∃𝑤 ∈ ℕ
𝐵 = (𝑧 / 𝑤)) |
6 | 4, 5 | sylib 121 |
. 2
⊢ (𝜑 → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) |
7 | | pcadd.1 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ ℙ) |
8 | | pcxcl 12265 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑃 pCnt 𝐴) ∈
ℝ*) |
9 | 7, 1, 8 | syl2anc 409 |
. . . . . . 7
⊢ (𝜑 → (𝑃 pCnt 𝐴) ∈
ℝ*) |
10 | 9 | xrleidd 9758 |
. . . . . 6
⊢ (𝜑 → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐴)) |
11 | 10 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 = 0) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐴)) |
12 | | oveq2 5861 |
. . . . . . 7
⊢ (𝐵 = 0 → (𝐴 + 𝐵) = (𝐴 + 0)) |
13 | | qcn 9593 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℚ → 𝐴 ∈
ℂ) |
14 | 1, 13 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℂ) |
15 | 14 | addid1d 8068 |
. . . . . . 7
⊢ (𝜑 → (𝐴 + 0) = 𝐴) |
16 | 12, 15 | sylan9eqr 2225 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 = 0) → (𝐴 + 𝐵) = 𝐴) |
17 | 16 | oveq2d 5869 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 = 0) → (𝑃 pCnt (𝐴 + 𝐵)) = (𝑃 pCnt 𝐴)) |
18 | 11, 17 | breqtrrd 4017 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 = 0) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵))) |
19 | 18 | a1d 22 |
. . 3
⊢ ((𝜑 ∧ 𝐵 = 0) → ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵)))) |
20 | | reeanv 2639 |
. . . 4
⊢
(∃𝑥 ∈
ℤ ∃𝑧 ∈
ℤ (∃𝑦 ∈
ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) ↔ (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤))) |
21 | | reeanv 2639 |
. . . . . 6
⊢
(∃𝑦 ∈
ℕ ∃𝑤 ∈
ℕ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) ↔ (∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤))) |
22 | 7 | ad3antrrr 489 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑃 ∈ ℙ) |
23 | | prmnn 12064 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
24 | 22, 23 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑃 ∈ ℕ) |
25 | | simplrl 530 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑥 ∈ ℤ) |
26 | | simprrl 534 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝐴 = (𝑥 / 𝑦)) |
27 | | pc0 12258 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 0) =
+∞) |
28 | 22, 27 | syl 14 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 0) = +∞) |
29 | 4 | ad3antrrr 489 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝐵 ∈ ℚ) |
30 | | simpllr 529 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝐵 ≠ 0) |
31 | | pcqcl 12260 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑃 ∈ ℙ ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐵) ∈ ℤ) |
32 | 22, 29, 30, 31 | syl12anc 1231 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝐵) ∈ ℤ) |
33 | 32 | zred 9334 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝐵) ∈ ℝ) |
34 | 33 | ltpnfd 9738 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝐵) < +∞) |
35 | | pnfxr 7972 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ +∞
∈ ℝ* |
36 | 33 | rexrd 7969 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝐵) ∈
ℝ*) |
37 | | xrlenlt 7984 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((+∞ ∈ ℝ* ∧ (𝑃 pCnt 𝐵) ∈ ℝ*) →
(+∞ ≤ (𝑃 pCnt
𝐵) ↔ ¬ (𝑃 pCnt 𝐵) < +∞)) |
38 | 35, 36, 37 | sylancr 412 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (+∞ ≤ (𝑃 pCnt 𝐵) ↔ ¬ (𝑃 pCnt 𝐵) < +∞)) |
39 | 38 | biimpd 143 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (+∞ ≤ (𝑃 pCnt 𝐵) → ¬ (𝑃 pCnt 𝐵) < +∞)) |
40 | 34, 39 | mt2d 620 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ¬ +∞ ≤ (𝑃 pCnt 𝐵)) |
41 | 28, 40 | eqnbrtrd 4007 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ¬ (𝑃 pCnt 0) ≤ (𝑃 pCnt 𝐵)) |
42 | | pcadd.4 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) |
43 | 42 | ad3antrrr 489 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) |
44 | | oveq2 5861 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐴 = 0 → (𝑃 pCnt 𝐴) = (𝑃 pCnt 0)) |
45 | 44 | breq1d 3999 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴 = 0 → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ↔ (𝑃 pCnt 0) ≤ (𝑃 pCnt 𝐵))) |
46 | 43, 45 | syl5ibcom 154 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝐴 = 0 → (𝑃 pCnt 0) ≤ (𝑃 pCnt 𝐵))) |
47 | 46 | necon3bd 2383 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (¬ (𝑃 pCnt 0) ≤ (𝑃 pCnt 𝐵) → 𝐴 ≠ 0)) |
48 | 41, 47 | mpd 13 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝐴 ≠ 0) |
49 | 26, 48 | eqnetrrd 2366 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑥 / 𝑦) ≠ 0) |
50 | | simprll 532 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑦 ∈ ℕ) |
51 | 50 | nncnd 8892 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑦 ∈ ℂ) |
52 | 50 | nnap0d 8924 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑦 # 0) |
53 | 51, 52 | div0apd 8704 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (0 / 𝑦) = 0) |
54 | | oveq1 5860 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 0 → (𝑥 / 𝑦) = (0 / 𝑦)) |
55 | 54 | eqeq1d 2179 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 0 → ((𝑥 / 𝑦) = 0 ↔ (0 / 𝑦) = 0)) |
56 | 53, 55 | syl5ibrcom 156 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑥 = 0 → (𝑥 / 𝑦) = 0)) |
57 | 56 | necon3d 2384 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑥 / 𝑦) ≠ 0 → 𝑥 ≠ 0)) |
58 | 49, 57 | mpd 13 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑥 ≠ 0) |
59 | | pczcl 12252 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑃 pCnt 𝑥) ∈
ℕ0) |
60 | 22, 25, 58, 59 | syl12anc 1231 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝑥) ∈
ℕ0) |
61 | 24, 60 | nnexpcld 10631 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑥)) ∈ ℕ) |
62 | 61 | nncnd 8892 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑥)) ∈ ℂ) |
63 | 62, 51 | mulcomd 7941 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝑥)) · 𝑦) = (𝑦 · (𝑃↑(𝑃 pCnt 𝑥)))) |
64 | 63 | oveq2d 5869 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑥 · (𝑃↑(𝑃 pCnt 𝑦))) / ((𝑃↑(𝑃 pCnt 𝑥)) · 𝑦)) = ((𝑥 · (𝑃↑(𝑃 pCnt 𝑦))) / (𝑦 · (𝑃↑(𝑃 pCnt 𝑥))))) |
65 | 25 | zcnd 9335 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑥 ∈ ℂ) |
66 | 61 | nnap0d 8924 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑥)) # 0) |
67 | 62, 66 | jca 304 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝑥)) ∈ ℂ ∧ (𝑃↑(𝑃 pCnt 𝑥)) # 0)) |
68 | 51, 52 | jca 304 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑦 ∈ ℂ ∧ 𝑦 # 0)) |
69 | 22, 50 | pccld 12254 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝑦) ∈
ℕ0) |
70 | 24, 69 | nnexpcld 10631 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑦)) ∈ ℕ) |
71 | 70 | nncnd 8892 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑦)) ∈ ℂ) |
72 | 70 | nnap0d 8924 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑦)) # 0) |
73 | 71, 72 | jca 304 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝑦)) ∈ ℂ ∧ (𝑃↑(𝑃 pCnt 𝑦)) # 0)) |
74 | | divdivdivap 8630 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℂ ∧ ((𝑃↑(𝑃 pCnt 𝑥)) ∈ ℂ ∧ (𝑃↑(𝑃 pCnt 𝑥)) # 0)) ∧ ((𝑦 ∈ ℂ ∧ 𝑦 # 0) ∧ ((𝑃↑(𝑃 pCnt 𝑦)) ∈ ℂ ∧ (𝑃↑(𝑃 pCnt 𝑦)) # 0))) → ((𝑥 / (𝑃↑(𝑃 pCnt 𝑥))) / (𝑦 / (𝑃↑(𝑃 pCnt 𝑦)))) = ((𝑥 · (𝑃↑(𝑃 pCnt 𝑦))) / ((𝑃↑(𝑃 pCnt 𝑥)) · 𝑦))) |
75 | 65, 67, 68, 73, 74 | syl22anc 1234 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑥 / (𝑃↑(𝑃 pCnt 𝑥))) / (𝑦 / (𝑃↑(𝑃 pCnt 𝑦)))) = ((𝑥 · (𝑃↑(𝑃 pCnt 𝑦))) / ((𝑃↑(𝑃 pCnt 𝑥)) · 𝑦))) |
76 | 26 | oveq2d 5869 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝐴) = (𝑃 pCnt (𝑥 / 𝑦))) |
77 | | pcdiv 12256 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝑥 / 𝑦)) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦))) |
78 | 22, 25, 58, 50, 77 | syl121anc 1238 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt (𝑥 / 𝑦)) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦))) |
79 | 76, 78 | eqtrd 2203 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝐴) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦))) |
80 | 79 | oveq2d 5869 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝐴)) = (𝑃↑((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)))) |
81 | 24 | nncnd 8892 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑃 ∈ ℂ) |
82 | 24 | nnap0d 8924 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑃 # 0) |
83 | 69 | nn0zd 9332 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝑦) ∈ ℤ) |
84 | 60 | nn0zd 9332 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝑥) ∈ ℤ) |
85 | 81, 82, 83, 84 | expsubapd 10620 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦))) = ((𝑃↑(𝑃 pCnt 𝑥)) / (𝑃↑(𝑃 pCnt 𝑦)))) |
86 | 80, 85 | eqtrd 2203 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝐴)) = ((𝑃↑(𝑃 pCnt 𝑥)) / (𝑃↑(𝑃 pCnt 𝑦)))) |
87 | 86 | oveq2d 5869 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) = (𝐴 / ((𝑃↑(𝑃 pCnt 𝑥)) / (𝑃↑(𝑃 pCnt 𝑦))))) |
88 | 26 | oveq1d 5868 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝐴 / ((𝑃↑(𝑃 pCnt 𝑥)) / (𝑃↑(𝑃 pCnt 𝑦)))) = ((𝑥 / 𝑦) / ((𝑃↑(𝑃 pCnt 𝑥)) / (𝑃↑(𝑃 pCnt 𝑦))))) |
89 | | divdivdivap 8630 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) ∧ (((𝑃↑(𝑃 pCnt 𝑥)) ∈ ℂ ∧ (𝑃↑(𝑃 pCnt 𝑥)) # 0) ∧ ((𝑃↑(𝑃 pCnt 𝑦)) ∈ ℂ ∧ (𝑃↑(𝑃 pCnt 𝑦)) # 0))) → ((𝑥 / 𝑦) / ((𝑃↑(𝑃 pCnt 𝑥)) / (𝑃↑(𝑃 pCnt 𝑦)))) = ((𝑥 · (𝑃↑(𝑃 pCnt 𝑦))) / (𝑦 · (𝑃↑(𝑃 pCnt 𝑥))))) |
90 | 65, 68, 67, 73, 89 | syl22anc 1234 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑥 / 𝑦) / ((𝑃↑(𝑃 pCnt 𝑥)) / (𝑃↑(𝑃 pCnt 𝑦)))) = ((𝑥 · (𝑃↑(𝑃 pCnt 𝑦))) / (𝑦 · (𝑃↑(𝑃 pCnt 𝑥))))) |
91 | 87, 88, 90 | 3eqtrd 2207 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) = ((𝑥 · (𝑃↑(𝑃 pCnt 𝑦))) / (𝑦 · (𝑃↑(𝑃 pCnt 𝑥))))) |
92 | 64, 75, 91 | 3eqtr4d 2213 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑥 / (𝑃↑(𝑃 pCnt 𝑥))) / (𝑦 / (𝑃↑(𝑃 pCnt 𝑦)))) = (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) |
93 | 92 | oveq2d 5869 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝐴)) · ((𝑥 / (𝑃↑(𝑃 pCnt 𝑥))) / (𝑦 / (𝑃↑(𝑃 pCnt 𝑦))))) = ((𝑃↑(𝑃 pCnt 𝐴)) · (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) |
94 | 1 | ad3antrrr 489 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝐴 ∈ ℚ) |
95 | 94, 13 | syl 14 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝐴 ∈ ℂ) |
96 | | pcqcl 12260 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℤ) |
97 | 22, 94, 48, 96 | syl12anc 1231 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝐴) ∈ ℤ) |
98 | 81, 82, 97 | expclzapd 10614 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℂ) |
99 | 81, 82, 97 | expap0d 10615 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝐴)) # 0) |
100 | 95, 98, 99 | divcanap2d 8709 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝐴)) · (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 𝐴) |
101 | 93, 100 | eqtr2d 2204 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝐴 = ((𝑃↑(𝑃 pCnt 𝐴)) · ((𝑥 / (𝑃↑(𝑃 pCnt 𝑥))) / (𝑦 / (𝑃↑(𝑃 pCnt 𝑦)))))) |
102 | | simplrr 531 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑧 ∈ ℤ) |
103 | | simprrr 535 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝐵 = (𝑧 / 𝑤)) |
104 | 103, 30 | eqnetrrd 2366 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑧 / 𝑤) ≠ 0) |
105 | | simprlr 533 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑤 ∈ ℕ) |
106 | 105 | nncnd 8892 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑤 ∈ ℂ) |
107 | 105 | nnap0d 8924 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑤 # 0) |
108 | 106, 107 | div0apd 8704 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (0 / 𝑤) = 0) |
109 | | oveq1 5860 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = 0 → (𝑧 / 𝑤) = (0 / 𝑤)) |
110 | 109 | eqeq1d 2179 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = 0 → ((𝑧 / 𝑤) = 0 ↔ (0 / 𝑤) = 0)) |
111 | 108, 110 | syl5ibrcom 156 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑧 = 0 → (𝑧 / 𝑤) = 0)) |
112 | 111 | necon3d 2384 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑧 / 𝑤) ≠ 0 → 𝑧 ≠ 0)) |
113 | 104, 112 | mpd 13 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑧 ≠ 0) |
114 | | pczcl 12252 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt 𝑧) ∈
ℕ0) |
115 | 22, 102, 113, 114 | syl12anc 1231 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝑧) ∈
ℕ0) |
116 | 24, 115 | nnexpcld 10631 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑧)) ∈ ℕ) |
117 | 116 | nncnd 8892 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑧)) ∈ ℂ) |
118 | 117, 106 | mulcomd 7941 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝑧)) · 𝑤) = (𝑤 · (𝑃↑(𝑃 pCnt 𝑧)))) |
119 | 118 | oveq2d 5869 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑧 · (𝑃↑(𝑃 pCnt 𝑤))) / ((𝑃↑(𝑃 pCnt 𝑧)) · 𝑤)) = ((𝑧 · (𝑃↑(𝑃 pCnt 𝑤))) / (𝑤 · (𝑃↑(𝑃 pCnt 𝑧))))) |
120 | 102 | zcnd 9335 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑧 ∈ ℂ) |
121 | 116 | nnap0d 8924 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑧)) # 0) |
122 | 117, 121 | jca 304 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝑧)) ∈ ℂ ∧ (𝑃↑(𝑃 pCnt 𝑧)) # 0)) |
123 | 106, 107 | jca 304 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑤 ∈ ℂ ∧ 𝑤 # 0)) |
124 | 22, 105 | pccld 12254 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝑤) ∈
ℕ0) |
125 | 24, 124 | nnexpcld 10631 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑤)) ∈ ℕ) |
126 | 125 | nncnd 8892 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑤)) ∈ ℂ) |
127 | 125 | nnap0d 8924 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑤)) # 0) |
128 | 126, 127 | jca 304 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝑤)) ∈ ℂ ∧ (𝑃↑(𝑃 pCnt 𝑤)) # 0)) |
129 | | divdivdivap 8630 |
. . . . . . . . . . . . 13
⊢ (((𝑧 ∈ ℂ ∧ ((𝑃↑(𝑃 pCnt 𝑧)) ∈ ℂ ∧ (𝑃↑(𝑃 pCnt 𝑧)) # 0)) ∧ ((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ ((𝑃↑(𝑃 pCnt 𝑤)) ∈ ℂ ∧ (𝑃↑(𝑃 pCnt 𝑤)) # 0))) → ((𝑧 / (𝑃↑(𝑃 pCnt 𝑧))) / (𝑤 / (𝑃↑(𝑃 pCnt 𝑤)))) = ((𝑧 · (𝑃↑(𝑃 pCnt 𝑤))) / ((𝑃↑(𝑃 pCnt 𝑧)) · 𝑤))) |
130 | 120, 122,
123, 128, 129 | syl22anc 1234 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑧 / (𝑃↑(𝑃 pCnt 𝑧))) / (𝑤 / (𝑃↑(𝑃 pCnt 𝑤)))) = ((𝑧 · (𝑃↑(𝑃 pCnt 𝑤))) / ((𝑃↑(𝑃 pCnt 𝑧)) · 𝑤))) |
131 | 103 | oveq2d 5869 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝐵) = (𝑃 pCnt (𝑧 / 𝑤))) |
132 | | pcdiv 12256 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑧 ≠ 0) ∧ 𝑤 ∈ ℕ) → (𝑃 pCnt (𝑧 / 𝑤)) = ((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤))) |
133 | 22, 102, 113, 105, 132 | syl121anc 1238 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt (𝑧 / 𝑤)) = ((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤))) |
134 | 131, 133 | eqtrd 2203 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝐵) = ((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤))) |
135 | 134 | oveq2d 5869 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝐵)) = (𝑃↑((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤)))) |
136 | 124 | nn0zd 9332 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝑤) ∈ ℤ) |
137 | 115 | nn0zd 9332 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝑧) ∈ ℤ) |
138 | 81, 82, 136, 137 | expsubapd 10620 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑((𝑃 pCnt 𝑧) − (𝑃 pCnt 𝑤))) = ((𝑃↑(𝑃 pCnt 𝑧)) / (𝑃↑(𝑃 pCnt 𝑤)))) |
139 | 135, 138 | eqtrd 2203 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝐵)) = ((𝑃↑(𝑃 pCnt 𝑧)) / (𝑃↑(𝑃 pCnt 𝑤)))) |
140 | 139 | oveq2d 5869 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝐵 / (𝑃↑(𝑃 pCnt 𝐵))) = (𝐵 / ((𝑃↑(𝑃 pCnt 𝑧)) / (𝑃↑(𝑃 pCnt 𝑤))))) |
141 | 103 | oveq1d 5868 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝐵 / ((𝑃↑(𝑃 pCnt 𝑧)) / (𝑃↑(𝑃 pCnt 𝑤)))) = ((𝑧 / 𝑤) / ((𝑃↑(𝑃 pCnt 𝑧)) / (𝑃↑(𝑃 pCnt 𝑤))))) |
142 | | divdivdivap 8630 |
. . . . . . . . . . . . . 14
⊢ (((𝑧 ∈ ℂ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) ∧ (((𝑃↑(𝑃 pCnt 𝑧)) ∈ ℂ ∧ (𝑃↑(𝑃 pCnt 𝑧)) # 0) ∧ ((𝑃↑(𝑃 pCnt 𝑤)) ∈ ℂ ∧ (𝑃↑(𝑃 pCnt 𝑤)) # 0))) → ((𝑧 / 𝑤) / ((𝑃↑(𝑃 pCnt 𝑧)) / (𝑃↑(𝑃 pCnt 𝑤)))) = ((𝑧 · (𝑃↑(𝑃 pCnt 𝑤))) / (𝑤 · (𝑃↑(𝑃 pCnt 𝑧))))) |
143 | 120, 123,
122, 128, 142 | syl22anc 1234 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑧 / 𝑤) / ((𝑃↑(𝑃 pCnt 𝑧)) / (𝑃↑(𝑃 pCnt 𝑤)))) = ((𝑧 · (𝑃↑(𝑃 pCnt 𝑤))) / (𝑤 · (𝑃↑(𝑃 pCnt 𝑧))))) |
144 | 140, 141,
143 | 3eqtrd 2207 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝐵 / (𝑃↑(𝑃 pCnt 𝐵))) = ((𝑧 · (𝑃↑(𝑃 pCnt 𝑤))) / (𝑤 · (𝑃↑(𝑃 pCnt 𝑧))))) |
145 | 119, 130,
144 | 3eqtr4d 2213 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑧 / (𝑃↑(𝑃 pCnt 𝑧))) / (𝑤 / (𝑃↑(𝑃 pCnt 𝑤)))) = (𝐵 / (𝑃↑(𝑃 pCnt 𝐵)))) |
146 | 145 | oveq2d 5869 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝐵)) · ((𝑧 / (𝑃↑(𝑃 pCnt 𝑧))) / (𝑤 / (𝑃↑(𝑃 pCnt 𝑤))))) = ((𝑃↑(𝑃 pCnt 𝐵)) · (𝐵 / (𝑃↑(𝑃 pCnt 𝐵))))) |
147 | | qcn 9593 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℚ → 𝐵 ∈
ℂ) |
148 | 29, 147 | syl 14 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝐵 ∈ ℂ) |
149 | 81, 82, 32 | expclzapd 10614 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝐵)) ∈ ℂ) |
150 | 81, 82, 32 | expap0d 10615 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝐵)) # 0) |
151 | 148, 149,
150 | divcanap2d 8709 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝐵)) · (𝐵 / (𝑃↑(𝑃 pCnt 𝐵)))) = 𝐵) |
152 | 146, 151 | eqtr2d 2204 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝐵 = ((𝑃↑(𝑃 pCnt 𝐵)) · ((𝑧 / (𝑃↑(𝑃 pCnt 𝑧))) / (𝑤 / (𝑃↑(𝑃 pCnt 𝑤)))))) |
153 | | eluz 9500 |
. . . . . . . . . . 11
⊢ (((𝑃 pCnt 𝐴) ∈ ℤ ∧ (𝑃 pCnt 𝐵) ∈ ℤ) → ((𝑃 pCnt 𝐵) ∈
(ℤ≥‘(𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))) |
154 | 97, 32, 153 | syl2anc 409 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃 pCnt 𝐵) ∈
(ℤ≥‘(𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))) |
155 | 43, 154 | mpbird 166 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝐵) ∈
(ℤ≥‘(𝑃 pCnt 𝐴))) |
156 | | pczdvds 12267 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝑥)) ∥ 𝑥) |
157 | 22, 25, 58, 156 | syl12anc 1231 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑥)) ∥ 𝑥) |
158 | 61 | nnzd 9333 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑥)) ∈ ℤ) |
159 | 61 | nnne0d 8923 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑥)) ≠ 0) |
160 | | dvdsval2 11752 |
. . . . . . . . . . . 12
⊢ (((𝑃↑(𝑃 pCnt 𝑥)) ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝑥)) ≠ 0 ∧ 𝑥 ∈ ℤ) → ((𝑃↑(𝑃 pCnt 𝑥)) ∥ 𝑥 ↔ (𝑥 / (𝑃↑(𝑃 pCnt 𝑥))) ∈ ℤ)) |
161 | 158, 159,
25, 160 | syl3anc 1233 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝑥)) ∥ 𝑥 ↔ (𝑥 / (𝑃↑(𝑃 pCnt 𝑥))) ∈ ℤ)) |
162 | 157, 161 | mpbid 146 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑥 / (𝑃↑(𝑃 pCnt 𝑥))) ∈ ℤ) |
163 | | pczndvds2 12271 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → ¬ 𝑃 ∥ (𝑥 / (𝑃↑(𝑃 pCnt 𝑥)))) |
164 | 22, 25, 58, 163 | syl12anc 1231 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ¬ 𝑃 ∥ (𝑥 / (𝑃↑(𝑃 pCnt 𝑥)))) |
165 | 162, 164 | jca 304 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑥 / (𝑃↑(𝑃 pCnt 𝑥))) ∈ ℤ ∧ ¬ 𝑃 ∥ (𝑥 / (𝑃↑(𝑃 pCnt 𝑥))))) |
166 | | pcdvds 12268 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ ℙ ∧ 𝑦 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝑦)) ∥ 𝑦) |
167 | 22, 50, 166 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑦)) ∥ 𝑦) |
168 | 70 | nnzd 9333 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑦)) ∈ ℤ) |
169 | 70 | nnne0d 8923 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑦)) ≠ 0) |
170 | 50 | nnzd 9333 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑦 ∈ ℤ) |
171 | | dvdsval2 11752 |
. . . . . . . . . . . . 13
⊢ (((𝑃↑(𝑃 pCnt 𝑦)) ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝑦)) ≠ 0 ∧ 𝑦 ∈ ℤ) → ((𝑃↑(𝑃 pCnt 𝑦)) ∥ 𝑦 ↔ (𝑦 / (𝑃↑(𝑃 pCnt 𝑦))) ∈ ℤ)) |
172 | 168, 169,
170, 171 | syl3anc 1233 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝑦)) ∥ 𝑦 ↔ (𝑦 / (𝑃↑(𝑃 pCnt 𝑦))) ∈ ℤ)) |
173 | 167, 172 | mpbid 146 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑦 / (𝑃↑(𝑃 pCnt 𝑦))) ∈ ℤ) |
174 | 50 | nnred 8891 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑦 ∈ ℝ) |
175 | 70 | nnred 8891 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑦)) ∈ ℝ) |
176 | 50 | nngt0d 8922 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 0 < 𝑦) |
177 | 70 | nngt0d 8922 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 0 < (𝑃↑(𝑃 pCnt 𝑦))) |
178 | 174, 175,
176, 177 | divgt0d 8851 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 0 < (𝑦 / (𝑃↑(𝑃 pCnt 𝑦)))) |
179 | | elnnz 9222 |
. . . . . . . . . . 11
⊢ ((𝑦 / (𝑃↑(𝑃 pCnt 𝑦))) ∈ ℕ ↔ ((𝑦 / (𝑃↑(𝑃 pCnt 𝑦))) ∈ ℤ ∧ 0 < (𝑦 / (𝑃↑(𝑃 pCnt 𝑦))))) |
180 | 173, 178,
179 | sylanbrc 415 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑦 / (𝑃↑(𝑃 pCnt 𝑦))) ∈ ℕ) |
181 | | pcndvds2 12272 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 𝑦 ∈ ℕ) → ¬
𝑃 ∥ (𝑦 / (𝑃↑(𝑃 pCnt 𝑦)))) |
182 | 22, 50, 181 | syl2anc 409 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ¬ 𝑃 ∥ (𝑦 / (𝑃↑(𝑃 pCnt 𝑦)))) |
183 | 180, 182 | jca 304 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑦 / (𝑃↑(𝑃 pCnt 𝑦))) ∈ ℕ ∧ ¬ 𝑃 ∥ (𝑦 / (𝑃↑(𝑃 pCnt 𝑦))))) |
184 | | pczdvds 12267 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑧 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝑧)) ∥ 𝑧) |
185 | 22, 102, 113, 184 | syl12anc 1231 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑧)) ∥ 𝑧) |
186 | 116 | nnzd 9333 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑧)) ∈ ℤ) |
187 | 116 | nnne0d 8923 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑧)) ≠ 0) |
188 | | dvdsval2 11752 |
. . . . . . . . . . . 12
⊢ (((𝑃↑(𝑃 pCnt 𝑧)) ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝑧)) ≠ 0 ∧ 𝑧 ∈ ℤ) → ((𝑃↑(𝑃 pCnt 𝑧)) ∥ 𝑧 ↔ (𝑧 / (𝑃↑(𝑃 pCnt 𝑧))) ∈ ℤ)) |
189 | 186, 187,
102, 188 | syl3anc 1233 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝑧)) ∥ 𝑧 ↔ (𝑧 / (𝑃↑(𝑃 pCnt 𝑧))) ∈ ℤ)) |
190 | 185, 189 | mpbid 146 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑧 / (𝑃↑(𝑃 pCnt 𝑧))) ∈ ℤ) |
191 | | pczndvds2 12271 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑧 ≠ 0)) → ¬ 𝑃 ∥ (𝑧 / (𝑃↑(𝑃 pCnt 𝑧)))) |
192 | 22, 102, 113, 191 | syl12anc 1231 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ¬ 𝑃 ∥ (𝑧 / (𝑃↑(𝑃 pCnt 𝑧)))) |
193 | 190, 192 | jca 304 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑧 / (𝑃↑(𝑃 pCnt 𝑧))) ∈ ℤ ∧ ¬ 𝑃 ∥ (𝑧 / (𝑃↑(𝑃 pCnt 𝑧))))) |
194 | | pcdvds 12268 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ ℙ ∧ 𝑤 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝑤)) ∥ 𝑤) |
195 | 22, 105, 194 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑤)) ∥ 𝑤) |
196 | 125 | nnzd 9333 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑤)) ∈ ℤ) |
197 | 125 | nnne0d 8923 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑤)) ≠ 0) |
198 | 105 | nnzd 9333 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑤 ∈ ℤ) |
199 | | dvdsval2 11752 |
. . . . . . . . . . . . 13
⊢ (((𝑃↑(𝑃 pCnt 𝑤)) ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝑤)) ≠ 0 ∧ 𝑤 ∈ ℤ) → ((𝑃↑(𝑃 pCnt 𝑤)) ∥ 𝑤 ↔ (𝑤 / (𝑃↑(𝑃 pCnt 𝑤))) ∈ ℤ)) |
200 | 196, 197,
198, 199 | syl3anc 1233 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑃↑(𝑃 pCnt 𝑤)) ∥ 𝑤 ↔ (𝑤 / (𝑃↑(𝑃 pCnt 𝑤))) ∈ ℤ)) |
201 | 195, 200 | mpbid 146 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑤 / (𝑃↑(𝑃 pCnt 𝑤))) ∈ ℤ) |
202 | 105 | nnred 8891 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 𝑤 ∈ ℝ) |
203 | 125 | nnred 8891 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃↑(𝑃 pCnt 𝑤)) ∈ ℝ) |
204 | 105 | nngt0d 8922 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 0 < 𝑤) |
205 | 125 | nngt0d 8922 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 0 < (𝑃↑(𝑃 pCnt 𝑤))) |
206 | 202, 203,
204, 205 | divgt0d 8851 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → 0 < (𝑤 / (𝑃↑(𝑃 pCnt 𝑤)))) |
207 | | elnnz 9222 |
. . . . . . . . . . 11
⊢ ((𝑤 / (𝑃↑(𝑃 pCnt 𝑤))) ∈ ℕ ↔ ((𝑤 / (𝑃↑(𝑃 pCnt 𝑤))) ∈ ℤ ∧ 0 < (𝑤 / (𝑃↑(𝑃 pCnt 𝑤))))) |
208 | 201, 206,
207 | sylanbrc 415 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑤 / (𝑃↑(𝑃 pCnt 𝑤))) ∈ ℕ) |
209 | | pcndvds2 12272 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 𝑤 ∈ ℕ) → ¬
𝑃 ∥ (𝑤 / (𝑃↑(𝑃 pCnt 𝑤)))) |
210 | 22, 105, 209 | syl2anc 409 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ¬ 𝑃 ∥ (𝑤 / (𝑃↑(𝑃 pCnt 𝑤)))) |
211 | 208, 210 | jca 304 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → ((𝑤 / (𝑃↑(𝑃 pCnt 𝑤))) ∈ ℕ ∧ ¬ 𝑃 ∥ (𝑤 / (𝑃↑(𝑃 pCnt 𝑤))))) |
212 | 22, 101, 152, 155, 165, 183, 193, 211 | pcaddlem 12292 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)))) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵))) |
213 | 212 | expr 373 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵)))) |
214 | 213 | rexlimdvva 2595 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (∃𝑦 ∈ ℕ ∃𝑤 ∈ ℕ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵)))) |
215 | 21, 214 | syl5bir 152 |
. . . . 5
⊢ (((𝜑 ∧ 𝐵 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵)))) |
216 | 215 | rexlimdvva 2595 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 ≠ 0) → (∃𝑥 ∈ ℤ ∃𝑧 ∈ ℤ (∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵)))) |
217 | 20, 216 | syl5bir 152 |
. . 3
⊢ ((𝜑 ∧ 𝐵 ≠ 0) → ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵)))) |
218 | | 0z 9223 |
. . . . . 6
⊢ 0 ∈
ℤ |
219 | | zq 9585 |
. . . . . 6
⊢ (0 ∈
ℤ → 0 ∈ ℚ) |
220 | 218, 219 | mp1i 10 |
. . . . 5
⊢ (𝜑 → 0 ∈
ℚ) |
221 | | qdceq 10203 |
. . . . 5
⊢ ((𝐵 ∈ ℚ ∧ 0 ∈
ℚ) → DECID 𝐵 = 0) |
222 | 4, 220, 221 | syl2anc 409 |
. . . 4
⊢ (𝜑 → DECID 𝐵 = 0) |
223 | | dcne 2351 |
. . . 4
⊢
(DECID 𝐵 = 0 ↔ (𝐵 = 0 ∨ 𝐵 ≠ 0)) |
224 | 222, 223 | sylib 121 |
. . 3
⊢ (𝜑 → (𝐵 = 0 ∨ 𝐵 ≠ 0)) |
225 | 19, 217, 224 | mpjaodan 793 |
. 2
⊢ (𝜑 → ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵)))) |
226 | 3, 6, 225 | mp2and 431 |
1
⊢ (𝜑 → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵))) |