| Step | Hyp | Ref
| Expression |
| 1 | | nnex 8996 |
. . 3
⊢ ℕ
∈ V |
| 2 | 1 | rabex 4177 |
. 2
⊢ {𝑧 ∈ ℕ ∣ ¬ 2
∥ 𝑧} ∈
V |
| 3 | | elrabi 2917 |
. . . 4
⊢ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → 𝑥 ∈ ℕ) |
| 4 | 3 | peano2nnd 9005 |
. . 3
⊢ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → (𝑥 + 1) ∈ ℕ) |
| 5 | | breq2 4037 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → (2 ∥ 𝑧 ↔ 2 ∥ 𝑥)) |
| 6 | 5 | notbid 668 |
. . . . . 6
⊢ (𝑧 = 𝑥 → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑥)) |
| 7 | 6 | elrab 2920 |
. . . . 5
⊢ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ↔ (𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥)) |
| 8 | 7 | simprbi 275 |
. . . 4
⊢ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → ¬ 2 ∥ 𝑥) |
| 9 | 3 | nnzd 9447 |
. . . . 5
⊢ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → 𝑥 ∈ ℤ) |
| 10 | | oddp1even 12041 |
. . . . 5
⊢ (𝑥 ∈ ℤ → (¬ 2
∥ 𝑥 ↔ 2 ∥
(𝑥 + 1))) |
| 11 | 9, 10 | syl 14 |
. . . 4
⊢ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → (¬ 2 ∥ 𝑥 ↔ 2 ∥ (𝑥 + 1))) |
| 12 | 8, 11 | mpbid 147 |
. . 3
⊢ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → 2 ∥ (𝑥 + 1)) |
| 13 | | nnehalf 12069 |
. . 3
⊢ (((𝑥 + 1) ∈ ℕ ∧ 2
∥ (𝑥 + 1)) →
((𝑥 + 1) / 2) ∈
ℕ) |
| 14 | 4, 12, 13 | syl2anc 411 |
. 2
⊢ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → ((𝑥 + 1) / 2) ∈ ℕ) |
| 15 | | nnz 9345 |
. . . . . 6
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℤ) |
| 16 | | 2z 9354 |
. . . . . . 7
⊢ 2 ∈
ℤ |
| 17 | 16 | a1i 9 |
. . . . . 6
⊢ (𝑦 ∈ ℕ → 2 ∈
ℤ) |
| 18 | 15, 17 | zmulcld 9454 |
. . . . 5
⊢ (𝑦 ∈ ℕ → (𝑦 · 2) ∈
ℤ) |
| 19 | | peano2zm 9364 |
. . . . 5
⊢ ((𝑦 · 2) ∈ ℤ
→ ((𝑦 · 2)
− 1) ∈ ℤ) |
| 20 | 18, 19 | syl 14 |
. . . 4
⊢ (𝑦 ∈ ℕ → ((𝑦 · 2) − 1) ∈
ℤ) |
| 21 | | 1e2m1 9109 |
. . . . 5
⊢ 1 = (2
− 1) |
| 22 | 17 | zred 9448 |
. . . . . 6
⊢ (𝑦 ∈ ℕ → 2 ∈
ℝ) |
| 23 | | nnre 8997 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℝ) |
| 24 | 23, 22 | remulcld 8057 |
. . . . . 6
⊢ (𝑦 ∈ ℕ → (𝑦 · 2) ∈
ℝ) |
| 25 | | 1red 8041 |
. . . . . 6
⊢ (𝑦 ∈ ℕ → 1 ∈
ℝ) |
| 26 | | 0le2 9080 |
. . . . . . . 8
⊢ 0 ≤
2 |
| 27 | 26 | a1i 9 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ → 0 ≤
2) |
| 28 | | nnge1 9013 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ → 1 ≤
𝑦) |
| 29 | 22, 23, 27, 28 | lemulge12d 8965 |
. . . . . 6
⊢ (𝑦 ∈ ℕ → 2 ≤
(𝑦 ·
2)) |
| 30 | 22, 24, 25, 29 | lesub1dd 8588 |
. . . . 5
⊢ (𝑦 ∈ ℕ → (2
− 1) ≤ ((𝑦
· 2) − 1)) |
| 31 | 21, 30 | eqbrtrid 4068 |
. . . 4
⊢ (𝑦 ∈ ℕ → 1 ≤
((𝑦 · 2) −
1)) |
| 32 | | elnnz1 9349 |
. . . 4
⊢ (((𝑦 · 2) − 1) ∈
ℕ ↔ (((𝑦
· 2) − 1) ∈ ℤ ∧ 1 ≤ ((𝑦 · 2) − 1))) |
| 33 | 20, 31, 32 | sylanbrc 417 |
. . 3
⊢ (𝑦 ∈ ℕ → ((𝑦 · 2) − 1) ∈
ℕ) |
| 34 | | dvdsmul2 11979 |
. . . . 5
⊢ ((𝑦 ∈ ℤ ∧ 2 ∈
ℤ) → 2 ∥ (𝑦 · 2)) |
| 35 | 15, 16, 34 | sylancl 413 |
. . . 4
⊢ (𝑦 ∈ ℕ → 2 ∥
(𝑦 ·
2)) |
| 36 | | oddm1even 12040 |
. . . . . 6
⊢ ((𝑦 · 2) ∈ ℤ
→ (¬ 2 ∥ (𝑦
· 2) ↔ 2 ∥ ((𝑦 · 2) − 1))) |
| 37 | 18, 36 | syl 14 |
. . . . 5
⊢ (𝑦 ∈ ℕ → (¬ 2
∥ (𝑦 · 2)
↔ 2 ∥ ((𝑦
· 2) − 1))) |
| 38 | 37 | biimprd 158 |
. . . 4
⊢ (𝑦 ∈ ℕ → (2
∥ ((𝑦 · 2)
− 1) → ¬ 2 ∥ (𝑦 · 2))) |
| 39 | 35, 38 | mt2d 626 |
. . 3
⊢ (𝑦 ∈ ℕ → ¬ 2
∥ ((𝑦 · 2)
− 1)) |
| 40 | | breq2 4037 |
. . . . 5
⊢ (𝑧 = ((𝑦 · 2) − 1) → (2 ∥
𝑧 ↔ 2 ∥ ((𝑦 · 2) −
1))) |
| 41 | 40 | notbid 668 |
. . . 4
⊢ (𝑧 = ((𝑦 · 2) − 1) → (¬ 2
∥ 𝑧 ↔ ¬ 2
∥ ((𝑦 · 2)
− 1))) |
| 42 | 41 | elrab 2920 |
. . 3
⊢ (((𝑦 · 2) − 1) ∈
{𝑧 ∈ ℕ ∣
¬ 2 ∥ 𝑧} ↔
(((𝑦 · 2) − 1)
∈ ℕ ∧ ¬ 2 ∥ ((𝑦 · 2) − 1))) |
| 43 | 33, 39, 42 | sylanbrc 417 |
. 2
⊢ (𝑦 ∈ ℕ → ((𝑦 · 2) − 1) ∈
{𝑧 ∈ ℕ ∣
¬ 2 ∥ 𝑧}) |
| 44 | 3 | adantr 276 |
. . . . . . 7
⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℕ) |
| 45 | 44 | nncnd 9004 |
. . . . . 6
⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℂ) |
| 46 | | 1cnd 8042 |
. . . . . 6
⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 1 ∈
ℂ) |
| 47 | 45, 46 | addcld 8046 |
. . . . 5
⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑥 + 1) ∈ ℂ) |
| 48 | | simpr 110 |
. . . . . 6
⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℕ) |
| 49 | 48 | nncnd 9004 |
. . . . 5
⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℂ) |
| 50 | | 2cnd 9063 |
. . . . 5
⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 2 ∈
ℂ) |
| 51 | | 2ap0 9083 |
. . . . . 6
⊢ 2 #
0 |
| 52 | 51 | a1i 9 |
. . . . 5
⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 2 #
0) |
| 53 | 47, 49, 50, 52 | divmulap3d 8852 |
. . . 4
⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (((𝑥 + 1) / 2) = 𝑦 ↔ (𝑥 + 1) = (𝑦 · 2))) |
| 54 | 49, 50 | mulcld 8047 |
. . . . 5
⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑦 · 2) ∈ ℂ) |
| 55 | 45, 46, 54 | addlsub 8396 |
. . . 4
⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → ((𝑥 + 1) = (𝑦 · 2) ↔ 𝑥 = ((𝑦 · 2) − 1))) |
| 56 | 53, 55 | bitrd 188 |
. . 3
⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (((𝑥 + 1) / 2) = 𝑦 ↔ 𝑥 = ((𝑦 · 2) − 1))) |
| 57 | | eqcom 2198 |
. . 3
⊢ (((𝑥 + 1) / 2) = 𝑦 ↔ 𝑦 = ((𝑥 + 1) / 2)) |
| 58 | 56, 57 | bitr3di 195 |
. 2
⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑥 = ((𝑦 · 2) − 1) ↔ 𝑦 = ((𝑥 + 1) / 2))) |
| 59 | 2, 1, 14, 43, 58 | en3i 6830 |
1
⊢ {𝑧 ∈ ℕ ∣ ¬ 2
∥ 𝑧} ≈
ℕ |