ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddennn GIF version

Theorem oddennn 11743
Description: There are as many odd positive integers as there are positive integers. (Contributed by Jim Kingdon, 11-May-2022.)
Assertion
Ref Expression
oddennn {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ≈ ℕ

Proof of Theorem oddennn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 8629 . . 3 ℕ ∈ V
21rabex 4030 . 2 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∈ V
3 elrabi 2804 . . . 4 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → 𝑥 ∈ ℕ)
43peano2nnd 8638 . . 3 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → (𝑥 + 1) ∈ ℕ)
5 breq2 3897 . . . . . . 7 (𝑧 = 𝑥 → (2 ∥ 𝑧 ↔ 2 ∥ 𝑥))
65notbid 639 . . . . . 6 (𝑧 = 𝑥 → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑥))
76elrab 2807 . . . . 5 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ↔ (𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥))
87simprbi 271 . . . 4 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → ¬ 2 ∥ 𝑥)
93nnzd 9069 . . . . 5 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → 𝑥 ∈ ℤ)
10 oddp1even 11414 . . . . 5 (𝑥 ∈ ℤ → (¬ 2 ∥ 𝑥 ↔ 2 ∥ (𝑥 + 1)))
119, 10syl 14 . . . 4 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → (¬ 2 ∥ 𝑥 ↔ 2 ∥ (𝑥 + 1)))
128, 11mpbid 146 . . 3 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → 2 ∥ (𝑥 + 1))
13 nnehalf 11442 . . 3 (((𝑥 + 1) ∈ ℕ ∧ 2 ∥ (𝑥 + 1)) → ((𝑥 + 1) / 2) ∈ ℕ)
144, 12, 13syl2anc 406 . 2 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → ((𝑥 + 1) / 2) ∈ ℕ)
15 nnz 8970 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
16 2z 8979 . . . . . . 7 2 ∈ ℤ
1716a1i 9 . . . . . 6 (𝑦 ∈ ℕ → 2 ∈ ℤ)
1815, 17zmulcld 9076 . . . . 5 (𝑦 ∈ ℕ → (𝑦 · 2) ∈ ℤ)
19 peano2zm 8989 . . . . 5 ((𝑦 · 2) ∈ ℤ → ((𝑦 · 2) − 1) ∈ ℤ)
2018, 19syl 14 . . . 4 (𝑦 ∈ ℕ → ((𝑦 · 2) − 1) ∈ ℤ)
21 1e2m1 8742 . . . . 5 1 = (2 − 1)
2217zred 9070 . . . . . 6 (𝑦 ∈ ℕ → 2 ∈ ℝ)
23 nnre 8630 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
2423, 22remulcld 7713 . . . . . 6 (𝑦 ∈ ℕ → (𝑦 · 2) ∈ ℝ)
25 1red 7698 . . . . . 6 (𝑦 ∈ ℕ → 1 ∈ ℝ)
26 0le2 8713 . . . . . . . 8 0 ≤ 2
2726a1i 9 . . . . . . 7 (𝑦 ∈ ℕ → 0 ≤ 2)
28 nnge1 8646 . . . . . . 7 (𝑦 ∈ ℕ → 1 ≤ 𝑦)
2922, 23, 27, 28lemulge12d 8599 . . . . . 6 (𝑦 ∈ ℕ → 2 ≤ (𝑦 · 2))
3022, 24, 25, 29lesub1dd 8234 . . . . 5 (𝑦 ∈ ℕ → (2 − 1) ≤ ((𝑦 · 2) − 1))
3121, 30eqbrtrid 3926 . . . 4 (𝑦 ∈ ℕ → 1 ≤ ((𝑦 · 2) − 1))
32 elnnz1 8974 . . . 4 (((𝑦 · 2) − 1) ∈ ℕ ↔ (((𝑦 · 2) − 1) ∈ ℤ ∧ 1 ≤ ((𝑦 · 2) − 1)))
3320, 31, 32sylanbrc 411 . . 3 (𝑦 ∈ ℕ → ((𝑦 · 2) − 1) ∈ ℕ)
34 dvdsmul2 11357 . . . . 5 ((𝑦 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (𝑦 · 2))
3515, 16, 34sylancl 407 . . . 4 (𝑦 ∈ ℕ → 2 ∥ (𝑦 · 2))
36 oddm1even 11413 . . . . . 6 ((𝑦 · 2) ∈ ℤ → (¬ 2 ∥ (𝑦 · 2) ↔ 2 ∥ ((𝑦 · 2) − 1)))
3718, 36syl 14 . . . . 5 (𝑦 ∈ ℕ → (¬ 2 ∥ (𝑦 · 2) ↔ 2 ∥ ((𝑦 · 2) − 1)))
3837biimprd 157 . . . 4 (𝑦 ∈ ℕ → (2 ∥ ((𝑦 · 2) − 1) → ¬ 2 ∥ (𝑦 · 2)))
3935, 38mt2d 597 . . 3 (𝑦 ∈ ℕ → ¬ 2 ∥ ((𝑦 · 2) − 1))
40 breq2 3897 . . . . 5 (𝑧 = ((𝑦 · 2) − 1) → (2 ∥ 𝑧 ↔ 2 ∥ ((𝑦 · 2) − 1)))
4140notbid 639 . . . 4 (𝑧 = ((𝑦 · 2) − 1) → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ ((𝑦 · 2) − 1)))
4241elrab 2807 . . 3 (((𝑦 · 2) − 1) ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ↔ (((𝑦 · 2) − 1) ∈ ℕ ∧ ¬ 2 ∥ ((𝑦 · 2) − 1)))
4333, 39, 42sylanbrc 411 . 2 (𝑦 ∈ ℕ → ((𝑦 · 2) − 1) ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})
44 eqcom 2115 . . 3 (((𝑥 + 1) / 2) = 𝑦𝑦 = ((𝑥 + 1) / 2))
453adantr 272 . . . . . . 7 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℕ)
4645nncnd 8637 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℂ)
47 1cnd 7699 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 1 ∈ ℂ)
4846, 47addcld 7702 . . . . 5 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑥 + 1) ∈ ℂ)
49 simpr 109 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℕ)
5049nncnd 8637 . . . . 5 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℂ)
51 2cnd 8696 . . . . 5 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 2 ∈ ℂ)
52 2ap0 8716 . . . . . 6 2 # 0
5352a1i 9 . . . . 5 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 2 # 0)
5448, 50, 51, 53divmulap3d 8491 . . . 4 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (((𝑥 + 1) / 2) = 𝑦 ↔ (𝑥 + 1) = (𝑦 · 2)))
5550, 51mulcld 7703 . . . . 5 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑦 · 2) ∈ ℂ)
5646, 47, 55addlsub 8044 . . . 4 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → ((𝑥 + 1) = (𝑦 · 2) ↔ 𝑥 = ((𝑦 · 2) − 1)))
5754, 56bitrd 187 . . 3 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (((𝑥 + 1) / 2) = 𝑦𝑥 = ((𝑦 · 2) − 1)))
5844, 57syl5rbbr 194 . 2 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑥 = ((𝑦 · 2) − 1) ↔ 𝑦 = ((𝑥 + 1) / 2)))
592, 1, 14, 43, 58en3i 6616 1 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ≈ ℕ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103  wb 104   = wceq 1312  wcel 1461  {crab 2392   class class class wbr 3893  (class class class)co 5726  cen 6583  0cc0 7540  1c1 7541   + caddc 7543   · cmul 7545  cle 7718  cmin 7849   # cap 8254   / cdiv 8338  cn 8623  2c2 8674  cz 8951  cdvds 11334
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-cnex 7629  ax-resscn 7630  ax-1cn 7631  ax-1re 7632  ax-icn 7633  ax-addcl 7634  ax-addrcl 7635  ax-mulcl 7636  ax-mulrcl 7637  ax-addcom 7638  ax-mulcom 7639  ax-addass 7640  ax-mulass 7641  ax-distr 7642  ax-i2m1 7643  ax-0lt1 7644  ax-1rid 7645  ax-0id 7646  ax-rnegex 7647  ax-precex 7648  ax-cnre 7649  ax-pre-ltirr 7650  ax-pre-ltwlin 7651  ax-pre-lttrn 7652  ax-pre-apti 7653  ax-pre-ltadd 7654  ax-pre-mulgt0 7655  ax-pre-mulext 7656
This theorem depends on definitions:  df-bi 116  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-xor 1335  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rmo 2396  df-rab 2397  df-v 2657  df-sbc 2877  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-br 3894  df-opab 3948  df-mpt 3949  df-id 4173  df-po 4176  df-iso 4177  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-en 6586  df-pnf 7719  df-mnf 7720  df-xr 7721  df-ltxr 7722  df-le 7723  df-sub 7851  df-neg 7852  df-reap 8248  df-ap 8255  df-div 8339  df-inn 8624  df-2 8682  df-n0 8875  df-z 8952  df-dvds 11335
This theorem is referenced by:  xpnnen  11745  unennn  11748
  Copyright terms: Public domain W3C validator