ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddennn GIF version

Theorem oddennn 12347
Description: There are as many odd positive integers as there are positive integers. (Contributed by Jim Kingdon, 11-May-2022.)
Assertion
Ref Expression
oddennn {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ≈ ℕ

Proof of Theorem oddennn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 8884 . . 3 ℕ ∈ V
21rabex 4133 . 2 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∈ V
3 elrabi 2883 . . . 4 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → 𝑥 ∈ ℕ)
43peano2nnd 8893 . . 3 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → (𝑥 + 1) ∈ ℕ)
5 breq2 3993 . . . . . . 7 (𝑧 = 𝑥 → (2 ∥ 𝑧 ↔ 2 ∥ 𝑥))
65notbid 662 . . . . . 6 (𝑧 = 𝑥 → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑥))
76elrab 2886 . . . . 5 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ↔ (𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥))
87simprbi 273 . . . 4 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → ¬ 2 ∥ 𝑥)
93nnzd 9333 . . . . 5 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → 𝑥 ∈ ℤ)
10 oddp1even 11835 . . . . 5 (𝑥 ∈ ℤ → (¬ 2 ∥ 𝑥 ↔ 2 ∥ (𝑥 + 1)))
119, 10syl 14 . . . 4 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → (¬ 2 ∥ 𝑥 ↔ 2 ∥ (𝑥 + 1)))
128, 11mpbid 146 . . 3 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → 2 ∥ (𝑥 + 1))
13 nnehalf 11863 . . 3 (((𝑥 + 1) ∈ ℕ ∧ 2 ∥ (𝑥 + 1)) → ((𝑥 + 1) / 2) ∈ ℕ)
144, 12, 13syl2anc 409 . 2 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → ((𝑥 + 1) / 2) ∈ ℕ)
15 nnz 9231 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
16 2z 9240 . . . . . . 7 2 ∈ ℤ
1716a1i 9 . . . . . 6 (𝑦 ∈ ℕ → 2 ∈ ℤ)
1815, 17zmulcld 9340 . . . . 5 (𝑦 ∈ ℕ → (𝑦 · 2) ∈ ℤ)
19 peano2zm 9250 . . . . 5 ((𝑦 · 2) ∈ ℤ → ((𝑦 · 2) − 1) ∈ ℤ)
2018, 19syl 14 . . . 4 (𝑦 ∈ ℕ → ((𝑦 · 2) − 1) ∈ ℤ)
21 1e2m1 8997 . . . . 5 1 = (2 − 1)
2217zred 9334 . . . . . 6 (𝑦 ∈ ℕ → 2 ∈ ℝ)
23 nnre 8885 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
2423, 22remulcld 7950 . . . . . 6 (𝑦 ∈ ℕ → (𝑦 · 2) ∈ ℝ)
25 1red 7935 . . . . . 6 (𝑦 ∈ ℕ → 1 ∈ ℝ)
26 0le2 8968 . . . . . . . 8 0 ≤ 2
2726a1i 9 . . . . . . 7 (𝑦 ∈ ℕ → 0 ≤ 2)
28 nnge1 8901 . . . . . . 7 (𝑦 ∈ ℕ → 1 ≤ 𝑦)
2922, 23, 27, 28lemulge12d 8854 . . . . . 6 (𝑦 ∈ ℕ → 2 ≤ (𝑦 · 2))
3022, 24, 25, 29lesub1dd 8480 . . . . 5 (𝑦 ∈ ℕ → (2 − 1) ≤ ((𝑦 · 2) − 1))
3121, 30eqbrtrid 4024 . . . 4 (𝑦 ∈ ℕ → 1 ≤ ((𝑦 · 2) − 1))
32 elnnz1 9235 . . . 4 (((𝑦 · 2) − 1) ∈ ℕ ↔ (((𝑦 · 2) − 1) ∈ ℤ ∧ 1 ≤ ((𝑦 · 2) − 1)))
3320, 31, 32sylanbrc 415 . . 3 (𝑦 ∈ ℕ → ((𝑦 · 2) − 1) ∈ ℕ)
34 dvdsmul2 11776 . . . . 5 ((𝑦 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (𝑦 · 2))
3515, 16, 34sylancl 411 . . . 4 (𝑦 ∈ ℕ → 2 ∥ (𝑦 · 2))
36 oddm1even 11834 . . . . . 6 ((𝑦 · 2) ∈ ℤ → (¬ 2 ∥ (𝑦 · 2) ↔ 2 ∥ ((𝑦 · 2) − 1)))
3718, 36syl 14 . . . . 5 (𝑦 ∈ ℕ → (¬ 2 ∥ (𝑦 · 2) ↔ 2 ∥ ((𝑦 · 2) − 1)))
3837biimprd 157 . . . 4 (𝑦 ∈ ℕ → (2 ∥ ((𝑦 · 2) − 1) → ¬ 2 ∥ (𝑦 · 2)))
3935, 38mt2d 620 . . 3 (𝑦 ∈ ℕ → ¬ 2 ∥ ((𝑦 · 2) − 1))
40 breq2 3993 . . . . 5 (𝑧 = ((𝑦 · 2) − 1) → (2 ∥ 𝑧 ↔ 2 ∥ ((𝑦 · 2) − 1)))
4140notbid 662 . . . 4 (𝑧 = ((𝑦 · 2) − 1) → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ ((𝑦 · 2) − 1)))
4241elrab 2886 . . 3 (((𝑦 · 2) − 1) ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ↔ (((𝑦 · 2) − 1) ∈ ℕ ∧ ¬ 2 ∥ ((𝑦 · 2) − 1)))
4333, 39, 42sylanbrc 415 . 2 (𝑦 ∈ ℕ → ((𝑦 · 2) − 1) ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})
443adantr 274 . . . . . . 7 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℕ)
4544nncnd 8892 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℂ)
46 1cnd 7936 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 1 ∈ ℂ)
4745, 46addcld 7939 . . . . 5 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑥 + 1) ∈ ℂ)
48 simpr 109 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℕ)
4948nncnd 8892 . . . . 5 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℂ)
50 2cnd 8951 . . . . 5 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 2 ∈ ℂ)
51 2ap0 8971 . . . . . 6 2 # 0
5251a1i 9 . . . . 5 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 2 # 0)
5347, 49, 50, 52divmulap3d 8742 . . . 4 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (((𝑥 + 1) / 2) = 𝑦 ↔ (𝑥 + 1) = (𝑦 · 2)))
5449, 50mulcld 7940 . . . . 5 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑦 · 2) ∈ ℂ)
5545, 46, 54addlsub 8289 . . . 4 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → ((𝑥 + 1) = (𝑦 · 2) ↔ 𝑥 = ((𝑦 · 2) − 1)))
5653, 55bitrd 187 . . 3 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (((𝑥 + 1) / 2) = 𝑦𝑥 = ((𝑦 · 2) − 1)))
57 eqcom 2172 . . 3 (((𝑥 + 1) / 2) = 𝑦𝑦 = ((𝑥 + 1) / 2))
5856, 57bitr3di 194 . 2 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑥 = ((𝑦 · 2) − 1) ↔ 𝑦 = ((𝑥 + 1) / 2)))
592, 1, 14, 43, 58en3i 6749 1 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ≈ ℕ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103  wb 104   = wceq 1348  wcel 2141  {crab 2452   class class class wbr 3989  (class class class)co 5853  cen 6716  0cc0 7774  1c1 7775   + caddc 7777   · cmul 7779  cle 7955  cmin 8090   # cap 8500   / cdiv 8589  cn 8878  2c2 8929  cz 9212  cdvds 11749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-xor 1371  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-en 6719  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-dvds 11750
This theorem is referenced by:  xpnnen  12349  unennn  12352
  Copyright terms: Public domain W3C validator