ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddennn GIF version

Theorem oddennn 12376
Description: There are as many odd positive integers as there are positive integers. (Contributed by Jim Kingdon, 11-May-2022.)
Assertion
Ref Expression
oddennn {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ≈ ℕ

Proof of Theorem oddennn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 8914 . . 3 ℕ ∈ V
21rabex 4144 . 2 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∈ V
3 elrabi 2890 . . . 4 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → 𝑥 ∈ ℕ)
43peano2nnd 8923 . . 3 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → (𝑥 + 1) ∈ ℕ)
5 breq2 4004 . . . . . . 7 (𝑧 = 𝑥 → (2 ∥ 𝑧 ↔ 2 ∥ 𝑥))
65notbid 667 . . . . . 6 (𝑧 = 𝑥 → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑥))
76elrab 2893 . . . . 5 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ↔ (𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥))
87simprbi 275 . . . 4 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → ¬ 2 ∥ 𝑥)
93nnzd 9363 . . . . 5 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → 𝑥 ∈ ℤ)
10 oddp1even 11864 . . . . 5 (𝑥 ∈ ℤ → (¬ 2 ∥ 𝑥 ↔ 2 ∥ (𝑥 + 1)))
119, 10syl 14 . . . 4 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → (¬ 2 ∥ 𝑥 ↔ 2 ∥ (𝑥 + 1)))
128, 11mpbid 147 . . 3 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → 2 ∥ (𝑥 + 1))
13 nnehalf 11892 . . 3 (((𝑥 + 1) ∈ ℕ ∧ 2 ∥ (𝑥 + 1)) → ((𝑥 + 1) / 2) ∈ ℕ)
144, 12, 13syl2anc 411 . 2 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → ((𝑥 + 1) / 2) ∈ ℕ)
15 nnz 9261 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
16 2z 9270 . . . . . . 7 2 ∈ ℤ
1716a1i 9 . . . . . 6 (𝑦 ∈ ℕ → 2 ∈ ℤ)
1815, 17zmulcld 9370 . . . . 5 (𝑦 ∈ ℕ → (𝑦 · 2) ∈ ℤ)
19 peano2zm 9280 . . . . 5 ((𝑦 · 2) ∈ ℤ → ((𝑦 · 2) − 1) ∈ ℤ)
2018, 19syl 14 . . . 4 (𝑦 ∈ ℕ → ((𝑦 · 2) − 1) ∈ ℤ)
21 1e2m1 9027 . . . . 5 1 = (2 − 1)
2217zred 9364 . . . . . 6 (𝑦 ∈ ℕ → 2 ∈ ℝ)
23 nnre 8915 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
2423, 22remulcld 7978 . . . . . 6 (𝑦 ∈ ℕ → (𝑦 · 2) ∈ ℝ)
25 1red 7963 . . . . . 6 (𝑦 ∈ ℕ → 1 ∈ ℝ)
26 0le2 8998 . . . . . . . 8 0 ≤ 2
2726a1i 9 . . . . . . 7 (𝑦 ∈ ℕ → 0 ≤ 2)
28 nnge1 8931 . . . . . . 7 (𝑦 ∈ ℕ → 1 ≤ 𝑦)
2922, 23, 27, 28lemulge12d 8884 . . . . . 6 (𝑦 ∈ ℕ → 2 ≤ (𝑦 · 2))
3022, 24, 25, 29lesub1dd 8508 . . . . 5 (𝑦 ∈ ℕ → (2 − 1) ≤ ((𝑦 · 2) − 1))
3121, 30eqbrtrid 4035 . . . 4 (𝑦 ∈ ℕ → 1 ≤ ((𝑦 · 2) − 1))
32 elnnz1 9265 . . . 4 (((𝑦 · 2) − 1) ∈ ℕ ↔ (((𝑦 · 2) − 1) ∈ ℤ ∧ 1 ≤ ((𝑦 · 2) − 1)))
3320, 31, 32sylanbrc 417 . . 3 (𝑦 ∈ ℕ → ((𝑦 · 2) − 1) ∈ ℕ)
34 dvdsmul2 11805 . . . . 5 ((𝑦 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (𝑦 · 2))
3515, 16, 34sylancl 413 . . . 4 (𝑦 ∈ ℕ → 2 ∥ (𝑦 · 2))
36 oddm1even 11863 . . . . . 6 ((𝑦 · 2) ∈ ℤ → (¬ 2 ∥ (𝑦 · 2) ↔ 2 ∥ ((𝑦 · 2) − 1)))
3718, 36syl 14 . . . . 5 (𝑦 ∈ ℕ → (¬ 2 ∥ (𝑦 · 2) ↔ 2 ∥ ((𝑦 · 2) − 1)))
3837biimprd 158 . . . 4 (𝑦 ∈ ℕ → (2 ∥ ((𝑦 · 2) − 1) → ¬ 2 ∥ (𝑦 · 2)))
3935, 38mt2d 625 . . 3 (𝑦 ∈ ℕ → ¬ 2 ∥ ((𝑦 · 2) − 1))
40 breq2 4004 . . . . 5 (𝑧 = ((𝑦 · 2) − 1) → (2 ∥ 𝑧 ↔ 2 ∥ ((𝑦 · 2) − 1)))
4140notbid 667 . . . 4 (𝑧 = ((𝑦 · 2) − 1) → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ ((𝑦 · 2) − 1)))
4241elrab 2893 . . 3 (((𝑦 · 2) − 1) ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ↔ (((𝑦 · 2) − 1) ∈ ℕ ∧ ¬ 2 ∥ ((𝑦 · 2) − 1)))
4333, 39, 42sylanbrc 417 . 2 (𝑦 ∈ ℕ → ((𝑦 · 2) − 1) ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})
443adantr 276 . . . . . . 7 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℕ)
4544nncnd 8922 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℂ)
46 1cnd 7964 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 1 ∈ ℂ)
4745, 46addcld 7967 . . . . 5 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑥 + 1) ∈ ℂ)
48 simpr 110 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℕ)
4948nncnd 8922 . . . . 5 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℂ)
50 2cnd 8981 . . . . 5 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 2 ∈ ℂ)
51 2ap0 9001 . . . . . 6 2 # 0
5251a1i 9 . . . . 5 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 2 # 0)
5347, 49, 50, 52divmulap3d 8771 . . . 4 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (((𝑥 + 1) / 2) = 𝑦 ↔ (𝑥 + 1) = (𝑦 · 2)))
5449, 50mulcld 7968 . . . . 5 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑦 · 2) ∈ ℂ)
5545, 46, 54addlsub 8317 . . . 4 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → ((𝑥 + 1) = (𝑦 · 2) ↔ 𝑥 = ((𝑦 · 2) − 1)))
5653, 55bitrd 188 . . 3 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (((𝑥 + 1) / 2) = 𝑦𝑥 = ((𝑦 · 2) − 1)))
57 eqcom 2179 . . 3 (((𝑥 + 1) / 2) = 𝑦𝑦 = ((𝑥 + 1) / 2))
5856, 57bitr3di 195 . 2 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑥 = ((𝑦 · 2) − 1) ↔ 𝑦 = ((𝑥 + 1) / 2)))
592, 1, 14, 43, 58en3i 6765 1 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ≈ ℕ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105   = wceq 1353  wcel 2148  {crab 2459   class class class wbr 4000  (class class class)co 5869  cen 6732  0cc0 7802  1c1 7803   + caddc 7805   · cmul 7807  cle 7983  cmin 8118   # cap 8528   / cdiv 8618  cn 8908  2c2 8959  cz 9242  cdvds 11778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-po 4293  df-iso 4294  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-en 6735  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-n0 9166  df-z 9243  df-dvds 11779
This theorem is referenced by:  xpnnen  12378  unennn  12381
  Copyright terms: Public domain W3C validator