Step | Hyp | Ref
| Expression |
1 | | nnex 8884 |
. . 3
⊢ ℕ
∈ V |
2 | 1 | rabex 4133 |
. 2
⊢ {𝑧 ∈ ℕ ∣ ¬ 2
∥ 𝑧} ∈
V |
3 | | elrabi 2883 |
. . . 4
⊢ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → 𝑥 ∈ ℕ) |
4 | 3 | peano2nnd 8893 |
. . 3
⊢ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → (𝑥 + 1) ∈ ℕ) |
5 | | breq2 3993 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → (2 ∥ 𝑧 ↔ 2 ∥ 𝑥)) |
6 | 5 | notbid 662 |
. . . . . 6
⊢ (𝑧 = 𝑥 → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑥)) |
7 | 6 | elrab 2886 |
. . . . 5
⊢ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ↔ (𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥)) |
8 | 7 | simprbi 273 |
. . . 4
⊢ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → ¬ 2 ∥ 𝑥) |
9 | 3 | nnzd 9333 |
. . . . 5
⊢ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → 𝑥 ∈ ℤ) |
10 | | oddp1even 11835 |
. . . . 5
⊢ (𝑥 ∈ ℤ → (¬ 2
∥ 𝑥 ↔ 2 ∥
(𝑥 + 1))) |
11 | 9, 10 | syl 14 |
. . . 4
⊢ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → (¬ 2 ∥ 𝑥 ↔ 2 ∥ (𝑥 + 1))) |
12 | 8, 11 | mpbid 146 |
. . 3
⊢ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → 2 ∥ (𝑥 + 1)) |
13 | | nnehalf 11863 |
. . 3
⊢ (((𝑥 + 1) ∈ ℕ ∧ 2
∥ (𝑥 + 1)) →
((𝑥 + 1) / 2) ∈
ℕ) |
14 | 4, 12, 13 | syl2anc 409 |
. 2
⊢ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → ((𝑥 + 1) / 2) ∈ ℕ) |
15 | | nnz 9231 |
. . . . . 6
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℤ) |
16 | | 2z 9240 |
. . . . . . 7
⊢ 2 ∈
ℤ |
17 | 16 | a1i 9 |
. . . . . 6
⊢ (𝑦 ∈ ℕ → 2 ∈
ℤ) |
18 | 15, 17 | zmulcld 9340 |
. . . . 5
⊢ (𝑦 ∈ ℕ → (𝑦 · 2) ∈
ℤ) |
19 | | peano2zm 9250 |
. . . . 5
⊢ ((𝑦 · 2) ∈ ℤ
→ ((𝑦 · 2)
− 1) ∈ ℤ) |
20 | 18, 19 | syl 14 |
. . . 4
⊢ (𝑦 ∈ ℕ → ((𝑦 · 2) − 1) ∈
ℤ) |
21 | | 1e2m1 8997 |
. . . . 5
⊢ 1 = (2
− 1) |
22 | 17 | zred 9334 |
. . . . . 6
⊢ (𝑦 ∈ ℕ → 2 ∈
ℝ) |
23 | | nnre 8885 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℝ) |
24 | 23, 22 | remulcld 7950 |
. . . . . 6
⊢ (𝑦 ∈ ℕ → (𝑦 · 2) ∈
ℝ) |
25 | | 1red 7935 |
. . . . . 6
⊢ (𝑦 ∈ ℕ → 1 ∈
ℝ) |
26 | | 0le2 8968 |
. . . . . . . 8
⊢ 0 ≤
2 |
27 | 26 | a1i 9 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ → 0 ≤
2) |
28 | | nnge1 8901 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ → 1 ≤
𝑦) |
29 | 22, 23, 27, 28 | lemulge12d 8854 |
. . . . . 6
⊢ (𝑦 ∈ ℕ → 2 ≤
(𝑦 ·
2)) |
30 | 22, 24, 25, 29 | lesub1dd 8480 |
. . . . 5
⊢ (𝑦 ∈ ℕ → (2
− 1) ≤ ((𝑦
· 2) − 1)) |
31 | 21, 30 | eqbrtrid 4024 |
. . . 4
⊢ (𝑦 ∈ ℕ → 1 ≤
((𝑦 · 2) −
1)) |
32 | | elnnz1 9235 |
. . . 4
⊢ (((𝑦 · 2) − 1) ∈
ℕ ↔ (((𝑦
· 2) − 1) ∈ ℤ ∧ 1 ≤ ((𝑦 · 2) − 1))) |
33 | 20, 31, 32 | sylanbrc 415 |
. . 3
⊢ (𝑦 ∈ ℕ → ((𝑦 · 2) − 1) ∈
ℕ) |
34 | | dvdsmul2 11776 |
. . . . 5
⊢ ((𝑦 ∈ ℤ ∧ 2 ∈
ℤ) → 2 ∥ (𝑦 · 2)) |
35 | 15, 16, 34 | sylancl 411 |
. . . 4
⊢ (𝑦 ∈ ℕ → 2 ∥
(𝑦 ·
2)) |
36 | | oddm1even 11834 |
. . . . . 6
⊢ ((𝑦 · 2) ∈ ℤ
→ (¬ 2 ∥ (𝑦
· 2) ↔ 2 ∥ ((𝑦 · 2) − 1))) |
37 | 18, 36 | syl 14 |
. . . . 5
⊢ (𝑦 ∈ ℕ → (¬ 2
∥ (𝑦 · 2)
↔ 2 ∥ ((𝑦
· 2) − 1))) |
38 | 37 | biimprd 157 |
. . . 4
⊢ (𝑦 ∈ ℕ → (2
∥ ((𝑦 · 2)
− 1) → ¬ 2 ∥ (𝑦 · 2))) |
39 | 35, 38 | mt2d 620 |
. . 3
⊢ (𝑦 ∈ ℕ → ¬ 2
∥ ((𝑦 · 2)
− 1)) |
40 | | breq2 3993 |
. . . . 5
⊢ (𝑧 = ((𝑦 · 2) − 1) → (2 ∥
𝑧 ↔ 2 ∥ ((𝑦 · 2) −
1))) |
41 | 40 | notbid 662 |
. . . 4
⊢ (𝑧 = ((𝑦 · 2) − 1) → (¬ 2
∥ 𝑧 ↔ ¬ 2
∥ ((𝑦 · 2)
− 1))) |
42 | 41 | elrab 2886 |
. . 3
⊢ (((𝑦 · 2) − 1) ∈
{𝑧 ∈ ℕ ∣
¬ 2 ∥ 𝑧} ↔
(((𝑦 · 2) − 1)
∈ ℕ ∧ ¬ 2 ∥ ((𝑦 · 2) − 1))) |
43 | 33, 39, 42 | sylanbrc 415 |
. 2
⊢ (𝑦 ∈ ℕ → ((𝑦 · 2) − 1) ∈
{𝑧 ∈ ℕ ∣
¬ 2 ∥ 𝑧}) |
44 | 3 | adantr 274 |
. . . . . . 7
⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℕ) |
45 | 44 | nncnd 8892 |
. . . . . 6
⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℂ) |
46 | | 1cnd 7936 |
. . . . . 6
⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 1 ∈
ℂ) |
47 | 45, 46 | addcld 7939 |
. . . . 5
⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑥 + 1) ∈ ℂ) |
48 | | simpr 109 |
. . . . . 6
⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℕ) |
49 | 48 | nncnd 8892 |
. . . . 5
⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℂ) |
50 | | 2cnd 8951 |
. . . . 5
⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 2 ∈
ℂ) |
51 | | 2ap0 8971 |
. . . . . 6
⊢ 2 #
0 |
52 | 51 | a1i 9 |
. . . . 5
⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 2 #
0) |
53 | 47, 49, 50, 52 | divmulap3d 8742 |
. . . 4
⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (((𝑥 + 1) / 2) = 𝑦 ↔ (𝑥 + 1) = (𝑦 · 2))) |
54 | 49, 50 | mulcld 7940 |
. . . . 5
⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑦 · 2) ∈ ℂ) |
55 | 45, 46, 54 | addlsub 8289 |
. . . 4
⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → ((𝑥 + 1) = (𝑦 · 2) ↔ 𝑥 = ((𝑦 · 2) − 1))) |
56 | 53, 55 | bitrd 187 |
. . 3
⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (((𝑥 + 1) / 2) = 𝑦 ↔ 𝑥 = ((𝑦 · 2) − 1))) |
57 | | eqcom 2172 |
. . 3
⊢ (((𝑥 + 1) / 2) = 𝑦 ↔ 𝑦 = ((𝑥 + 1) / 2)) |
58 | 56, 57 | bitr3di 194 |
. 2
⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑥 = ((𝑦 · 2) − 1) ↔ 𝑦 = ((𝑥 + 1) / 2))) |
59 | 2, 1, 14, 43, 58 | en3i 6749 |
1
⊢ {𝑧 ∈ ℕ ∣ ¬ 2
∥ 𝑧} ≈
ℕ |