ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddennn GIF version

Theorem oddennn 12705
Description: There are as many odd positive integers as there are positive integers. (Contributed by Jim Kingdon, 11-May-2022.)
Assertion
Ref Expression
oddennn {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ≈ ℕ

Proof of Theorem oddennn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 9041 . . 3 ℕ ∈ V
21rabex 4187 . 2 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∈ V
3 elrabi 2925 . . . 4 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → 𝑥 ∈ ℕ)
43peano2nnd 9050 . . 3 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → (𝑥 + 1) ∈ ℕ)
5 breq2 4047 . . . . . . 7 (𝑧 = 𝑥 → (2 ∥ 𝑧 ↔ 2 ∥ 𝑥))
65notbid 668 . . . . . 6 (𝑧 = 𝑥 → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑥))
76elrab 2928 . . . . 5 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ↔ (𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥))
87simprbi 275 . . . 4 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → ¬ 2 ∥ 𝑥)
93nnzd 9493 . . . . 5 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → 𝑥 ∈ ℤ)
10 oddp1even 12129 . . . . 5 (𝑥 ∈ ℤ → (¬ 2 ∥ 𝑥 ↔ 2 ∥ (𝑥 + 1)))
119, 10syl 14 . . . 4 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → (¬ 2 ∥ 𝑥 ↔ 2 ∥ (𝑥 + 1)))
128, 11mpbid 147 . . 3 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → 2 ∥ (𝑥 + 1))
13 nnehalf 12157 . . 3 (((𝑥 + 1) ∈ ℕ ∧ 2 ∥ (𝑥 + 1)) → ((𝑥 + 1) / 2) ∈ ℕ)
144, 12, 13syl2anc 411 . 2 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → ((𝑥 + 1) / 2) ∈ ℕ)
15 nnz 9390 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
16 2z 9399 . . . . . . 7 2 ∈ ℤ
1716a1i 9 . . . . . 6 (𝑦 ∈ ℕ → 2 ∈ ℤ)
1815, 17zmulcld 9500 . . . . 5 (𝑦 ∈ ℕ → (𝑦 · 2) ∈ ℤ)
19 peano2zm 9409 . . . . 5 ((𝑦 · 2) ∈ ℤ → ((𝑦 · 2) − 1) ∈ ℤ)
2018, 19syl 14 . . . 4 (𝑦 ∈ ℕ → ((𝑦 · 2) − 1) ∈ ℤ)
21 1e2m1 9154 . . . . 5 1 = (2 − 1)
2217zred 9494 . . . . . 6 (𝑦 ∈ ℕ → 2 ∈ ℝ)
23 nnre 9042 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
2423, 22remulcld 8102 . . . . . 6 (𝑦 ∈ ℕ → (𝑦 · 2) ∈ ℝ)
25 1red 8086 . . . . . 6 (𝑦 ∈ ℕ → 1 ∈ ℝ)
26 0le2 9125 . . . . . . . 8 0 ≤ 2
2726a1i 9 . . . . . . 7 (𝑦 ∈ ℕ → 0 ≤ 2)
28 nnge1 9058 . . . . . . 7 (𝑦 ∈ ℕ → 1 ≤ 𝑦)
2922, 23, 27, 28lemulge12d 9010 . . . . . 6 (𝑦 ∈ ℕ → 2 ≤ (𝑦 · 2))
3022, 24, 25, 29lesub1dd 8633 . . . . 5 (𝑦 ∈ ℕ → (2 − 1) ≤ ((𝑦 · 2) − 1))
3121, 30eqbrtrid 4078 . . . 4 (𝑦 ∈ ℕ → 1 ≤ ((𝑦 · 2) − 1))
32 elnnz1 9394 . . . 4 (((𝑦 · 2) − 1) ∈ ℕ ↔ (((𝑦 · 2) − 1) ∈ ℤ ∧ 1 ≤ ((𝑦 · 2) − 1)))
3320, 31, 32sylanbrc 417 . . 3 (𝑦 ∈ ℕ → ((𝑦 · 2) − 1) ∈ ℕ)
34 dvdsmul2 12067 . . . . 5 ((𝑦 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (𝑦 · 2))
3515, 16, 34sylancl 413 . . . 4 (𝑦 ∈ ℕ → 2 ∥ (𝑦 · 2))
36 oddm1even 12128 . . . . . 6 ((𝑦 · 2) ∈ ℤ → (¬ 2 ∥ (𝑦 · 2) ↔ 2 ∥ ((𝑦 · 2) − 1)))
3718, 36syl 14 . . . . 5 (𝑦 ∈ ℕ → (¬ 2 ∥ (𝑦 · 2) ↔ 2 ∥ ((𝑦 · 2) − 1)))
3837biimprd 158 . . . 4 (𝑦 ∈ ℕ → (2 ∥ ((𝑦 · 2) − 1) → ¬ 2 ∥ (𝑦 · 2)))
3935, 38mt2d 626 . . 3 (𝑦 ∈ ℕ → ¬ 2 ∥ ((𝑦 · 2) − 1))
40 breq2 4047 . . . . 5 (𝑧 = ((𝑦 · 2) − 1) → (2 ∥ 𝑧 ↔ 2 ∥ ((𝑦 · 2) − 1)))
4140notbid 668 . . . 4 (𝑧 = ((𝑦 · 2) − 1) → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ ((𝑦 · 2) − 1)))
4241elrab 2928 . . 3 (((𝑦 · 2) − 1) ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ↔ (((𝑦 · 2) − 1) ∈ ℕ ∧ ¬ 2 ∥ ((𝑦 · 2) − 1)))
4333, 39, 42sylanbrc 417 . 2 (𝑦 ∈ ℕ → ((𝑦 · 2) − 1) ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})
443adantr 276 . . . . . . 7 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℕ)
4544nncnd 9049 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℂ)
46 1cnd 8087 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 1 ∈ ℂ)
4745, 46addcld 8091 . . . . 5 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑥 + 1) ∈ ℂ)
48 simpr 110 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℕ)
4948nncnd 9049 . . . . 5 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℂ)
50 2cnd 9108 . . . . 5 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 2 ∈ ℂ)
51 2ap0 9128 . . . . . 6 2 # 0
5251a1i 9 . . . . 5 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 2 # 0)
5347, 49, 50, 52divmulap3d 8897 . . . 4 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (((𝑥 + 1) / 2) = 𝑦 ↔ (𝑥 + 1) = (𝑦 · 2)))
5449, 50mulcld 8092 . . . . 5 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑦 · 2) ∈ ℂ)
5545, 46, 54addlsub 8441 . . . 4 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → ((𝑥 + 1) = (𝑦 · 2) ↔ 𝑥 = ((𝑦 · 2) − 1)))
5653, 55bitrd 188 . . 3 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (((𝑥 + 1) / 2) = 𝑦𝑥 = ((𝑦 · 2) − 1)))
57 eqcom 2206 . . 3 (((𝑥 + 1) / 2) = 𝑦𝑦 = ((𝑥 + 1) / 2))
5856, 57bitr3di 195 . 2 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑥 = ((𝑦 · 2) − 1) ↔ 𝑦 = ((𝑥 + 1) / 2)))
592, 1, 14, 43, 58en3i 6861 1 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ≈ ℕ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105   = wceq 1372  wcel 2175  {crab 2487   class class class wbr 4043  (class class class)co 5943  cen 6824  0cc0 7924  1c1 7925   + caddc 7927   · cmul 7929  cle 8107  cmin 8242   # cap 8653   / cdiv 8744  cn 9035  2c2 9086  cz 9371  cdvds 12040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-xor 1395  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-po 4342  df-iso 4343  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-en 6827  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-n0 9295  df-z 9372  df-dvds 12041
This theorem is referenced by:  xpnnen  12707  unennn  12710
  Copyright terms: Public domain W3C validator