ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddennn GIF version

Theorem oddennn 12549
Description: There are as many odd positive integers as there are positive integers. (Contributed by Jim Kingdon, 11-May-2022.)
Assertion
Ref Expression
oddennn {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ≈ ℕ

Proof of Theorem oddennn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 8988 . . 3 ℕ ∈ V
21rabex 4173 . 2 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∈ V
3 elrabi 2913 . . . 4 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → 𝑥 ∈ ℕ)
43peano2nnd 8997 . . 3 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → (𝑥 + 1) ∈ ℕ)
5 breq2 4033 . . . . . . 7 (𝑧 = 𝑥 → (2 ∥ 𝑧 ↔ 2 ∥ 𝑥))
65notbid 668 . . . . . 6 (𝑧 = 𝑥 → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑥))
76elrab 2916 . . . . 5 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ↔ (𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥))
87simprbi 275 . . . 4 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → ¬ 2 ∥ 𝑥)
93nnzd 9438 . . . . 5 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → 𝑥 ∈ ℤ)
10 oddp1even 12017 . . . . 5 (𝑥 ∈ ℤ → (¬ 2 ∥ 𝑥 ↔ 2 ∥ (𝑥 + 1)))
119, 10syl 14 . . . 4 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → (¬ 2 ∥ 𝑥 ↔ 2 ∥ (𝑥 + 1)))
128, 11mpbid 147 . . 3 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → 2 ∥ (𝑥 + 1))
13 nnehalf 12045 . . 3 (((𝑥 + 1) ∈ ℕ ∧ 2 ∥ (𝑥 + 1)) → ((𝑥 + 1) / 2) ∈ ℕ)
144, 12, 13syl2anc 411 . 2 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} → ((𝑥 + 1) / 2) ∈ ℕ)
15 nnz 9336 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
16 2z 9345 . . . . . . 7 2 ∈ ℤ
1716a1i 9 . . . . . 6 (𝑦 ∈ ℕ → 2 ∈ ℤ)
1815, 17zmulcld 9445 . . . . 5 (𝑦 ∈ ℕ → (𝑦 · 2) ∈ ℤ)
19 peano2zm 9355 . . . . 5 ((𝑦 · 2) ∈ ℤ → ((𝑦 · 2) − 1) ∈ ℤ)
2018, 19syl 14 . . . 4 (𝑦 ∈ ℕ → ((𝑦 · 2) − 1) ∈ ℤ)
21 1e2m1 9101 . . . . 5 1 = (2 − 1)
2217zred 9439 . . . . . 6 (𝑦 ∈ ℕ → 2 ∈ ℝ)
23 nnre 8989 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
2423, 22remulcld 8050 . . . . . 6 (𝑦 ∈ ℕ → (𝑦 · 2) ∈ ℝ)
25 1red 8034 . . . . . 6 (𝑦 ∈ ℕ → 1 ∈ ℝ)
26 0le2 9072 . . . . . . . 8 0 ≤ 2
2726a1i 9 . . . . . . 7 (𝑦 ∈ ℕ → 0 ≤ 2)
28 nnge1 9005 . . . . . . 7 (𝑦 ∈ ℕ → 1 ≤ 𝑦)
2922, 23, 27, 28lemulge12d 8957 . . . . . 6 (𝑦 ∈ ℕ → 2 ≤ (𝑦 · 2))
3022, 24, 25, 29lesub1dd 8580 . . . . 5 (𝑦 ∈ ℕ → (2 − 1) ≤ ((𝑦 · 2) − 1))
3121, 30eqbrtrid 4064 . . . 4 (𝑦 ∈ ℕ → 1 ≤ ((𝑦 · 2) − 1))
32 elnnz1 9340 . . . 4 (((𝑦 · 2) − 1) ∈ ℕ ↔ (((𝑦 · 2) − 1) ∈ ℤ ∧ 1 ≤ ((𝑦 · 2) − 1)))
3320, 31, 32sylanbrc 417 . . 3 (𝑦 ∈ ℕ → ((𝑦 · 2) − 1) ∈ ℕ)
34 dvdsmul2 11957 . . . . 5 ((𝑦 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (𝑦 · 2))
3515, 16, 34sylancl 413 . . . 4 (𝑦 ∈ ℕ → 2 ∥ (𝑦 · 2))
36 oddm1even 12016 . . . . . 6 ((𝑦 · 2) ∈ ℤ → (¬ 2 ∥ (𝑦 · 2) ↔ 2 ∥ ((𝑦 · 2) − 1)))
3718, 36syl 14 . . . . 5 (𝑦 ∈ ℕ → (¬ 2 ∥ (𝑦 · 2) ↔ 2 ∥ ((𝑦 · 2) − 1)))
3837biimprd 158 . . . 4 (𝑦 ∈ ℕ → (2 ∥ ((𝑦 · 2) − 1) → ¬ 2 ∥ (𝑦 · 2)))
3935, 38mt2d 626 . . 3 (𝑦 ∈ ℕ → ¬ 2 ∥ ((𝑦 · 2) − 1))
40 breq2 4033 . . . . 5 (𝑧 = ((𝑦 · 2) − 1) → (2 ∥ 𝑧 ↔ 2 ∥ ((𝑦 · 2) − 1)))
4140notbid 668 . . . 4 (𝑧 = ((𝑦 · 2) − 1) → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ ((𝑦 · 2) − 1)))
4241elrab 2916 . . 3 (((𝑦 · 2) − 1) ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ↔ (((𝑦 · 2) − 1) ∈ ℕ ∧ ¬ 2 ∥ ((𝑦 · 2) − 1)))
4333, 39, 42sylanbrc 417 . 2 (𝑦 ∈ ℕ → ((𝑦 · 2) − 1) ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})
443adantr 276 . . . . . . 7 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℕ)
4544nncnd 8996 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℂ)
46 1cnd 8035 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 1 ∈ ℂ)
4745, 46addcld 8039 . . . . 5 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑥 + 1) ∈ ℂ)
48 simpr 110 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℕ)
4948nncnd 8996 . . . . 5 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℂ)
50 2cnd 9055 . . . . 5 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 2 ∈ ℂ)
51 2ap0 9075 . . . . . 6 2 # 0
5251a1i 9 . . . . 5 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → 2 # 0)
5347, 49, 50, 52divmulap3d 8844 . . . 4 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (((𝑥 + 1) / 2) = 𝑦 ↔ (𝑥 + 1) = (𝑦 · 2)))
5449, 50mulcld 8040 . . . . 5 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑦 · 2) ∈ ℂ)
5545, 46, 54addlsub 8389 . . . 4 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → ((𝑥 + 1) = (𝑦 · 2) ↔ 𝑥 = ((𝑦 · 2) − 1)))
5653, 55bitrd 188 . . 3 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (((𝑥 + 1) / 2) = 𝑦𝑥 = ((𝑦 · 2) − 1)))
57 eqcom 2195 . . 3 (((𝑥 + 1) / 2) = 𝑦𝑦 = ((𝑥 + 1) / 2))
5856, 57bitr3di 195 . 2 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ ℕ) → (𝑥 = ((𝑦 · 2) − 1) ↔ 𝑦 = ((𝑥 + 1) / 2)))
592, 1, 14, 43, 58en3i 6825 1 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ≈ ℕ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105   = wceq 1364  wcel 2164  {crab 2476   class class class wbr 4029  (class class class)co 5918  cen 6792  0cc0 7872  1c1 7873   + caddc 7875   · cmul 7877  cle 8055  cmin 8190   # cap 8600   / cdiv 8691  cn 8982  2c2 9033  cz 9317  cdvds 11930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-en 6795  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-dvds 11931
This theorem is referenced by:  xpnnen  12551  unennn  12554
  Copyright terms: Public domain W3C validator