ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgseisenlem1 GIF version

Theorem lgseisenlem1 15395
Description: Lemma for lgseisen 15399. If 𝑅(𝑢) = (𝑄 · 𝑢) mod 𝑃 and 𝑀(𝑢) = (-1↑𝑅(𝑢)) · 𝑅(𝑢), then for any even 1 ≤ 𝑢𝑃 − 1, 𝑀(𝑢) is also an even integer 1 ≤ 𝑀(𝑢) ≤ 𝑃 − 1. To simplify these statements, we divide all the even numbers by 2, so that it becomes the statement that 𝑀(𝑥 / 2) = (-1↑𝑅(𝑥 / 2)) · 𝑅(𝑥 / 2) / 2 is an integer between 1 and (𝑃 − 1) / 2. (Contributed by Mario Carneiro, 17-Jun-2015.)
Hypotheses
Ref Expression
lgseisen.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgseisen.2 (𝜑𝑄 ∈ (ℙ ∖ {2}))
lgseisen.3 (𝜑𝑃𝑄)
lgseisen.4 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃)
lgseisen.5 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))
Assertion
Ref Expression
lgseisenlem1 (𝜑𝑀:(1...((𝑃 − 1) / 2))⟶(1...((𝑃 − 1) / 2)))
Distinct variable groups:   𝑥,𝑃   𝜑,𝑥   𝑥,𝑄
Allowed substitution hints:   𝑅(𝑥)   𝑀(𝑥)

Proof of Theorem lgseisenlem1
StepHypRef Expression
1 1zzd 9370 . . 3 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 1 ∈ ℤ)
2 lgseisen.1 . . . . . 6 (𝜑𝑃 ∈ (ℙ ∖ {2}))
32adantr 276 . . . . 5 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ (ℙ ∖ {2}))
4 oddprm 12453 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
53, 4syl 14 . . . 4 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 − 1) / 2) ∈ ℕ)
65nnzd 9464 . . 3 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 − 1) / 2) ∈ ℤ)
7 neg1cn 9112 . . . . . . . . . . . . 13 -1 ∈ ℂ
87a1i 9 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ (𝑅 / 2) ∈ ℤ) → -1 ∈ ℂ)
9 neg1ap0 9116 . . . . . . . . . . . . 13 -1 # 0
109a1i 9 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ (𝑅 / 2) ∈ ℤ) → -1 # 0)
11 2z 9371 . . . . . . . . . . . . 13 2 ∈ ℤ
1211a1i 9 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ (𝑅 / 2) ∈ ℤ) → 2 ∈ ℤ)
13 simpr 110 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ (𝑅 / 2) ∈ ℤ) → (𝑅 / 2) ∈ ℤ)
14 expmulzap 10694 . . . . . . . . . . . 12 (((-1 ∈ ℂ ∧ -1 # 0) ∧ (2 ∈ ℤ ∧ (𝑅 / 2) ∈ ℤ)) → (-1↑(2 · (𝑅 / 2))) = ((-1↑2)↑(𝑅 / 2)))
158, 10, 12, 13, 14syl22anc 1250 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ (𝑅 / 2) ∈ ℤ) → (-1↑(2 · (𝑅 / 2))) = ((-1↑2)↑(𝑅 / 2)))
16 lgseisen.4 . . . . . . . . . . . . . . . . . 18 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃)
17 lgseisen.2 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑄 ∈ (ℙ ∖ {2}))
1817adantr 276 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ (ℙ ∖ {2}))
1918eldifad 3168 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℙ)
20 prmz 12304 . . . . . . . . . . . . . . . . . . . . 21 (𝑄 ∈ ℙ → 𝑄 ∈ ℤ)
2119, 20syl 14 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℤ)
22 elfzelz 10117 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℤ)
2322adantl 277 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℤ)
24 zmulcl 9396 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (2 · 𝑥) ∈ ℤ)
2511, 23, 24sylancr 414 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℤ)
2621, 25zmulcld 9471 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) ∈ ℤ)
273eldifad 3168 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℙ)
28 prmnn 12303 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2927, 28syl 14 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℕ)
30 zmodfz 10455 . . . . . . . . . . . . . . . . . . 19 (((𝑄 · (2 · 𝑥)) ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((𝑄 · (2 · 𝑥)) mod 𝑃) ∈ (0...(𝑃 − 1)))
3126, 29, 30syl2anc 411 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 · (2 · 𝑥)) mod 𝑃) ∈ (0...(𝑃 − 1)))
3216, 31eqeltrid 2283 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 ∈ (0...(𝑃 − 1)))
33 elfznn0 10206 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ (0...(𝑃 − 1)) → 𝑅 ∈ ℕ0)
3432, 33syl 14 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 ∈ ℕ0)
3534nn0zd 9463 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 ∈ ℤ)
3635zcnd 9466 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 ∈ ℂ)
3736adantr 276 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ (𝑅 / 2) ∈ ℤ) → 𝑅 ∈ ℂ)
38 2cnd 9080 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ (𝑅 / 2) ∈ ℤ) → 2 ∈ ℂ)
39 2ap0 9100 . . . . . . . . . . . . . 14 2 # 0
4039a1i 9 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ (𝑅 / 2) ∈ ℤ) → 2 # 0)
4137, 38, 40divcanap2d 8836 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ (𝑅 / 2) ∈ ℤ) → (2 · (𝑅 / 2)) = 𝑅)
4241oveq2d 5941 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ (𝑅 / 2) ∈ ℤ) → (-1↑(2 · (𝑅 / 2))) = (-1↑𝑅))
43 neg1sqe1 10743 . . . . . . . . . . . . 13 (-1↑2) = 1
4443oveq1i 5935 . . . . . . . . . . . 12 ((-1↑2)↑(𝑅 / 2)) = (1↑(𝑅 / 2))
45 1exp 10677 . . . . . . . . . . . . 13 ((𝑅 / 2) ∈ ℤ → (1↑(𝑅 / 2)) = 1)
4645adantl 277 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ (𝑅 / 2) ∈ ℤ) → (1↑(𝑅 / 2)) = 1)
4744, 46eqtrid 2241 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ (𝑅 / 2) ∈ ℤ) → ((-1↑2)↑(𝑅 / 2)) = 1)
4815, 42, 473eqtr3d 2237 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ (𝑅 / 2) ∈ ℤ) → (-1↑𝑅) = 1)
4948oveq1d 5940 . . . . . . . . 9 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ (𝑅 / 2) ∈ ℤ) → ((-1↑𝑅) · 𝑅) = (1 · 𝑅))
5037mullidd 8061 . . . . . . . . 9 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ (𝑅 / 2) ∈ ℤ) → (1 · 𝑅) = 𝑅)
5149, 50eqtrd 2229 . . . . . . . 8 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ (𝑅 / 2) ∈ ℤ) → ((-1↑𝑅) · 𝑅) = 𝑅)
5251oveq1d 5940 . . . . . . 7 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ (𝑅 / 2) ∈ ℤ) → (((-1↑𝑅) · 𝑅) mod 𝑃) = (𝑅 mod 𝑃))
53 zq 9717 . . . . . . . . . 10 (𝑅 ∈ ℤ → 𝑅 ∈ ℚ)
5435, 53syl 14 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 ∈ ℚ)
55 nnq 9724 . . . . . . . . . 10 (𝑃 ∈ ℕ → 𝑃 ∈ ℚ)
5629, 55syl 14 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℚ)
5734nn0ge0d 9322 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 0 ≤ 𝑅)
58 zq 9717 . . . . . . . . . . . 12 ((𝑄 · (2 · 𝑥)) ∈ ℤ → (𝑄 · (2 · 𝑥)) ∈ ℚ)
5926, 58syl 14 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) ∈ ℚ)
6029nngt0d 9051 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 0 < 𝑃)
61 modqlt 10442 . . . . . . . . . . 11 (((𝑄 · (2 · 𝑥)) ∈ ℚ ∧ 𝑃 ∈ ℚ ∧ 0 < 𝑃) → ((𝑄 · (2 · 𝑥)) mod 𝑃) < 𝑃)
6259, 56, 60, 61syl3anc 1249 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 · (2 · 𝑥)) mod 𝑃) < 𝑃)
6316, 62eqbrtrid 4069 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 < 𝑃)
64 modqid 10458 . . . . . . . . 9 (((𝑅 ∈ ℚ ∧ 𝑃 ∈ ℚ) ∧ (0 ≤ 𝑅𝑅 < 𝑃)) → (𝑅 mod 𝑃) = 𝑅)
6554, 56, 57, 63, 64syl22anc 1250 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑅 mod 𝑃) = 𝑅)
6665adantr 276 . . . . . . 7 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ (𝑅 / 2) ∈ ℤ) → (𝑅 mod 𝑃) = 𝑅)
6752, 66eqtrd 2229 . . . . . 6 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ (𝑅 / 2) ∈ ℤ) → (((-1↑𝑅) · 𝑅) mod 𝑃) = 𝑅)
6867oveq1d 5940 . . . . 5 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ (𝑅 / 2) ∈ ℤ) → ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) = (𝑅 / 2))
6968, 13eqeltrd 2273 . . . 4 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ (𝑅 / 2) ∈ ℤ) → ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) ∈ ℤ)
7029nncnd 9021 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℂ)
7170mullidd 8061 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (1 · 𝑃) = 𝑃)
7271oveq2d 5941 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-𝑅 + (1 · 𝑃)) = (-𝑅 + 𝑃))
7334nn0red 9320 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 ∈ ℝ)
7473renegcld 8423 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → -𝑅 ∈ ℝ)
7574recnd 8072 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → -𝑅 ∈ ℂ)
7670, 75addcomd 8194 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 + -𝑅) = (-𝑅 + 𝑃))
7770, 36negsubd 8360 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 + -𝑅) = (𝑃𝑅))
7872, 76, 773eqtr2d 2235 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-𝑅 + (1 · 𝑃)) = (𝑃𝑅))
7978oveq1d 5940 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-𝑅 + (1 · 𝑃)) mod 𝑃) = ((𝑃𝑅) mod 𝑃))
80 qnegcl 9727 . . . . . . . . . . . 12 (𝑅 ∈ ℚ → -𝑅 ∈ ℚ)
8154, 80syl 14 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → -𝑅 ∈ ℚ)
82 modqcyc 10468 . . . . . . . . . . 11 (((-𝑅 ∈ ℚ ∧ 1 ∈ ℤ) ∧ (𝑃 ∈ ℚ ∧ 0 < 𝑃)) → ((-𝑅 + (1 · 𝑃)) mod 𝑃) = (-𝑅 mod 𝑃))
8381, 1, 56, 60, 82syl22anc 1250 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-𝑅 + (1 · 𝑃)) mod 𝑃) = (-𝑅 mod 𝑃))
84 qsubcl 9729 . . . . . . . . . . . 12 ((𝑃 ∈ ℚ ∧ 𝑅 ∈ ℚ) → (𝑃𝑅) ∈ ℚ)
8556, 54, 84syl2anc 411 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃𝑅) ∈ ℚ)
8629nnred 9020 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℝ)
8773, 86, 63ltled 8162 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅𝑃)
8886, 73subge0d 8579 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (0 ≤ (𝑃𝑅) ↔ 𝑅𝑃))
8987, 88mpbird 167 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 0 ≤ (𝑃𝑅))
90 2nn 9169 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℕ
91 elfznn 10146 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℕ)
9291adantl 277 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℕ)
93 nnmulcl 9028 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (2 · 𝑥) ∈ ℕ)
9490, 92, 93sylancr 414 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℕ)
95 elfzle2 10120 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ≤ ((𝑃 − 1) / 2))
9695adantl 277 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ≤ ((𝑃 − 1) / 2))
9792nnred 9020 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℝ)
98 prmuz2 12324 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
99 uz2m1nn 9696 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ (ℤ‘2) → (𝑃 − 1) ∈ ℕ)
10027, 98, 993syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 − 1) ∈ ℕ)
101100nnred 9020 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 − 1) ∈ ℝ)
102 2re 9077 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ ℝ
103102a1i 9 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈ ℝ)
104 2pos 9098 . . . . . . . . . . . . . . . . . . . . . . . 24 0 < 2
105104a1i 9 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 0 < 2)
106 lemuldiv2 8926 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ ∧ (𝑃 − 1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑥) ≤ (𝑃 − 1) ↔ 𝑥 ≤ ((𝑃 − 1) / 2)))
10797, 101, 103, 105, 106syl112anc 1253 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((2 · 𝑥) ≤ (𝑃 − 1) ↔ 𝑥 ≤ ((𝑃 − 1) / 2)))
10896, 107mpbird 167 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ≤ (𝑃 − 1))
109 prmz 12304 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
11027, 109syl 14 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℤ)
111 peano2zm 9381 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℤ → (𝑃 − 1) ∈ ℤ)
112 fznn 10181 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃 − 1) ∈ ℤ → ((2 · 𝑥) ∈ (1...(𝑃 − 1)) ↔ ((2 · 𝑥) ∈ ℕ ∧ (2 · 𝑥) ≤ (𝑃 − 1))))
113110, 111, 1123syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((2 · 𝑥) ∈ (1...(𝑃 − 1)) ↔ ((2 · 𝑥) ∈ ℕ ∧ (2 · 𝑥) ≤ (𝑃 − 1))))
11494, 108, 113mpbir2and 946 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ (1...(𝑃 − 1)))
115 fzm1ndvds 12038 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℕ ∧ (2 · 𝑥) ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ (2 · 𝑥))
11629, 114, 115syl2anc 411 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ¬ 𝑃 ∥ (2 · 𝑥))
117 lgseisen.3 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑃𝑄)
118117adantr 276 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃𝑄)
119 prmrp 12338 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑃 gcd 𝑄) = 1 ↔ 𝑃𝑄))
12027, 19, 119syl2anc 411 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 gcd 𝑄) = 1 ↔ 𝑃𝑄))
121118, 120mpbird 167 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 gcd 𝑄) = 1)
122 coprmdvds 12285 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℤ ∧ (2 · 𝑥) ∈ ℤ) → ((𝑃 ∥ (𝑄 · (2 · 𝑥)) ∧ (𝑃 gcd 𝑄) = 1) → 𝑃 ∥ (2 · 𝑥)))
123110, 21, 25, 122syl3anc 1249 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 ∥ (𝑄 · (2 · 𝑥)) ∧ (𝑃 gcd 𝑄) = 1) → 𝑃 ∥ (2 · 𝑥)))
124121, 123mpan2d 428 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 ∥ (𝑄 · (2 · 𝑥)) → 𝑃 ∥ (2 · 𝑥)))
125116, 124mtod 664 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ¬ 𝑃 ∥ (𝑄 · (2 · 𝑥)))
126 dvdsval3 11973 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℕ ∧ (𝑄 · (2 · 𝑥)) ∈ ℤ) → (𝑃 ∥ (𝑄 · (2 · 𝑥)) ↔ ((𝑄 · (2 · 𝑥)) mod 𝑃) = 0))
12729, 26, 126syl2anc 411 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 ∥ (𝑄 · (2 · 𝑥)) ↔ ((𝑄 · (2 · 𝑥)) mod 𝑃) = 0))
128125, 127mtbid 673 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ¬ ((𝑄 · (2 · 𝑥)) mod 𝑃) = 0)
12916eqeq1i 2204 . . . . . . . . . . . . . . . . 17 (𝑅 = 0 ↔ ((𝑄 · (2 · 𝑥)) mod 𝑃) = 0)
130128, 129sylnibr 678 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ¬ 𝑅 = 0)
131100nnnn0d 9319 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 − 1) ∈ ℕ0)
132 nn0uz 9653 . . . . . . . . . . . . . . . . . . . 20 0 = (ℤ‘0)
133131, 132eleqtrdi 2289 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 − 1) ∈ (ℤ‘0))
134 elfzp12 10191 . . . . . . . . . . . . . . . . . . 19 ((𝑃 − 1) ∈ (ℤ‘0) → (𝑅 ∈ (0...(𝑃 − 1)) ↔ (𝑅 = 0 ∨ 𝑅 ∈ ((0 + 1)...(𝑃 − 1)))))
135133, 134syl 14 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑅 ∈ (0...(𝑃 − 1)) ↔ (𝑅 = 0 ∨ 𝑅 ∈ ((0 + 1)...(𝑃 − 1)))))
13632, 135mpbid 147 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑅 = 0 ∨ 𝑅 ∈ ((0 + 1)...(𝑃 − 1))))
137136ord 725 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (¬ 𝑅 = 0 → 𝑅 ∈ ((0 + 1)...(𝑃 − 1))))
138130, 137mpd 13 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 ∈ ((0 + 1)...(𝑃 − 1)))
139 1e0p1 9515 . . . . . . . . . . . . . . . 16 1 = (0 + 1)
140139oveq1i 5935 . . . . . . . . . . . . . . 15 (1...(𝑃 − 1)) = ((0 + 1)...(𝑃 − 1))
141138, 140eleqtrrdi 2290 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 ∈ (1...(𝑃 − 1)))
142 elfznn 10146 . . . . . . . . . . . . . 14 (𝑅 ∈ (1...(𝑃 − 1)) → 𝑅 ∈ ℕ)
143141, 142syl 14 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 ∈ ℕ)
144143nnrpd 9786 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 ∈ ℝ+)
14586, 144ltsubrpd 9821 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃𝑅) < 𝑃)
146 modqid 10458 . . . . . . . . . . 11 ((((𝑃𝑅) ∈ ℚ ∧ 𝑃 ∈ ℚ) ∧ (0 ≤ (𝑃𝑅) ∧ (𝑃𝑅) < 𝑃)) → ((𝑃𝑅) mod 𝑃) = (𝑃𝑅))
14785, 56, 89, 145, 146syl22anc 1250 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃𝑅) mod 𝑃) = (𝑃𝑅))
14879, 83, 1473eqtr3d 2237 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-𝑅 mod 𝑃) = (𝑃𝑅))
149148adantr 276 . . . . . . . 8 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → (-𝑅 mod 𝑃) = (𝑃𝑅))
150 ax-1cn 7989 . . . . . . . . . . . . . 14 1 ∈ ℂ
151150a1i 9 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → 1 ∈ ℂ)
152143adantr 276 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → 𝑅 ∈ ℕ)
153 2ne0 9099 . . . . . . . . . . . . . . . 16 2 ≠ 0
15435peano2zd 9468 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑅 + 1) ∈ ℤ)
155 dvdsval2 11972 . . . . . . . . . . . . . . . 16 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ (𝑅 + 1) ∈ ℤ) → (2 ∥ (𝑅 + 1) ↔ ((𝑅 + 1) / 2) ∈ ℤ))
15611, 153, 154, 155mp3an12i 1352 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 ∥ (𝑅 + 1) ↔ ((𝑅 + 1) / 2) ∈ ℤ))
157156biimpar 297 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → 2 ∥ (𝑅 + 1))
15835adantr 276 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → 𝑅 ∈ ℤ)
15990a1i 9 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → 2 ∈ ℕ)
160 1lt2 9177 . . . . . . . . . . . . . . . 16 1 < 2
161160a1i 9 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → 1 < 2)
162 ndvdsp1 12114 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℤ ∧ 2 ∈ ℕ ∧ 1 < 2) → (2 ∥ 𝑅 → ¬ 2 ∥ (𝑅 + 1)))
163158, 159, 161, 162syl3anc 1249 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → (2 ∥ 𝑅 → ¬ 2 ∥ (𝑅 + 1)))
164157, 163mt2d 626 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → ¬ 2 ∥ 𝑅)
165 oexpneg 12059 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ 𝑅 ∈ ℕ ∧ ¬ 2 ∥ 𝑅) → (-1↑𝑅) = -(1↑𝑅))
166151, 152, 164, 165syl3anc 1249 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → (-1↑𝑅) = -(1↑𝑅))
167 1exp 10677 . . . . . . . . . . . . . 14 (𝑅 ∈ ℤ → (1↑𝑅) = 1)
168158, 167syl 14 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → (1↑𝑅) = 1)
169168negeqd 8238 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → -(1↑𝑅) = -1)
170166, 169eqtrd 2229 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → (-1↑𝑅) = -1)
171170oveq1d 5940 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → ((-1↑𝑅) · 𝑅) = (-1 · 𝑅))
17236adantr 276 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → 𝑅 ∈ ℂ)
173172mulm1d 8453 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → (-1 · 𝑅) = -𝑅)
174171, 173eqtrd 2229 . . . . . . . . 9 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → ((-1↑𝑅) · 𝑅) = -𝑅)
175174oveq1d 5940 . . . . . . . 8 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → (((-1↑𝑅) · 𝑅) mod 𝑃) = (-𝑅 mod 𝑃))
17670adantr 276 . . . . . . . . 9 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → 𝑃 ∈ ℂ)
177176, 172, 151pnpcan2d 8392 . . . . . . . 8 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → ((𝑃 + 1) − (𝑅 + 1)) = (𝑃𝑅))
178149, 175, 1773eqtr4d 2239 . . . . . . 7 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → (((-1↑𝑅) · 𝑅) mod 𝑃) = ((𝑃 + 1) − (𝑅 + 1)))
179178oveq1d 5940 . . . . . 6 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) = (((𝑃 + 1) − (𝑅 + 1)) / 2))
180 peano2cn 8178 . . . . . . . 8 (𝑃 ∈ ℂ → (𝑃 + 1) ∈ ℂ)
181176, 180syl 14 . . . . . . 7 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → (𝑃 + 1) ∈ ℂ)
182 peano2cn 8178 . . . . . . . 8 (𝑅 ∈ ℂ → (𝑅 + 1) ∈ ℂ)
183172, 182syl 14 . . . . . . 7 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → (𝑅 + 1) ∈ ℂ)
184 2cnd 9080 . . . . . . 7 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → 2 ∈ ℂ)
18539a1i 9 . . . . . . 7 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → 2 # 0)
186181, 183, 184, 185divsubdirapd 8874 . . . . . 6 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → (((𝑃 + 1) − (𝑅 + 1)) / 2) = (((𝑃 + 1) / 2) − ((𝑅 + 1) / 2)))
187179, 186eqtrd 2229 . . . . 5 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) = (((𝑃 + 1) / 2) − ((𝑅 + 1) / 2)))
188176, 151, 184subadd23d 8376 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → ((𝑃 − 1) + 2) = (𝑃 + (2 − 1)))
189 2m1e1 9125 . . . . . . . . . . 11 (2 − 1) = 1
190189oveq2i 5936 . . . . . . . . . 10 (𝑃 + (2 − 1)) = (𝑃 + 1)
191188, 190eqtr2di 2246 . . . . . . . . 9 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → (𝑃 + 1) = ((𝑃 − 1) + 2))
192191oveq1d 5940 . . . . . . . 8 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → ((𝑃 + 1) / 2) = (((𝑃 − 1) + 2) / 2))
193100nncnd 9021 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 − 1) ∈ ℂ)
194193adantr 276 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → (𝑃 − 1) ∈ ℂ)
195194, 184, 184, 185divdirapd 8873 . . . . . . . . 9 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → (((𝑃 − 1) + 2) / 2) = (((𝑃 − 1) / 2) + (2 / 2)))
196 2div2e1 9140 . . . . . . . . . 10 (2 / 2) = 1
197196oveq2i 5936 . . . . . . . . 9 (((𝑃 − 1) / 2) + (2 / 2)) = (((𝑃 − 1) / 2) + 1)
198195, 197eqtrdi 2245 . . . . . . . 8 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → (((𝑃 − 1) + 2) / 2) = (((𝑃 − 1) / 2) + 1))
199192, 198eqtrd 2229 . . . . . . 7 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → ((𝑃 + 1) / 2) = (((𝑃 − 1) / 2) + 1))
2006adantr 276 . . . . . . . 8 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → ((𝑃 − 1) / 2) ∈ ℤ)
201200peano2zd 9468 . . . . . . 7 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → (((𝑃 − 1) / 2) + 1) ∈ ℤ)
202199, 201eqeltrd 2273 . . . . . 6 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → ((𝑃 + 1) / 2) ∈ ℤ)
203 simpr 110 . . . . . 6 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → ((𝑅 + 1) / 2) ∈ ℤ)
204202, 203zsubcld 9470 . . . . 5 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → (((𝑃 + 1) / 2) − ((𝑅 + 1) / 2)) ∈ ℤ)
205187, 204eqeltrd 2273 . . . 4 (((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) ∧ ((𝑅 + 1) / 2) ∈ ℤ) → ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) ∈ ℤ)
206 zeo 9448 . . . . 5 (𝑅 ∈ ℤ → ((𝑅 / 2) ∈ ℤ ∨ ((𝑅 + 1) / 2) ∈ ℤ))
20735, 206syl 14 . . . 4 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑅 / 2) ∈ ℤ ∨ ((𝑅 + 1) / 2) ∈ ℤ))
20869, 205, 207mpjaodan 799 . . 3 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) ∈ ℤ)
209 m1expcl 10671 . . . . . . . . . 10 (𝑅 ∈ ℤ → (-1↑𝑅) ∈ ℤ)
21035, 209syl 14 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑅) ∈ ℤ)
211210, 35zmulcld 9471 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑅) · 𝑅) ∈ ℤ)
212211, 29zmodcld 10454 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℕ0)
213212nn0red 9320 . . . . . 6 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℝ)
214 fzm1ndvds 12038 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ ∧ 𝑅 ∈ (1...(𝑃 − 1))) → ¬ 𝑃𝑅)
21529, 141, 214syl2anc 411 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ¬ 𝑃𝑅)
216 1ap0 8634 . . . . . . . . . . . . . . . . . . . 20 1 # 0
217 divneg2ap 8780 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 # 0) → -(1 / 1) = (1 / -1))
218150, 150, 216, 217mp3an 1348 . . . . . . . . . . . . . . . . . . 19 -(1 / 1) = (1 / -1)
219 1div1e1 8748 . . . . . . . . . . . . . . . . . . . 20 (1 / 1) = 1
220219negeqi 8237 . . . . . . . . . . . . . . . . . . 19 -(1 / 1) = -1
221218, 220eqtr3i 2219 . . . . . . . . . . . . . . . . . 18 (1 / -1) = -1
222221oveq1i 5935 . . . . . . . . . . . . . . . . 17 ((1 / -1)↑𝑅) = (-1↑𝑅)
2237a1i 9 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → -1 ∈ ℂ)
2249a1i 9 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → -1 # 0)
225223, 224, 35exprecapd 10790 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((1 / -1)↑𝑅) = (1 / (-1↑𝑅)))
226222, 225eqtr3id 2243 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑅) = (1 / (-1↑𝑅)))
227226oveq2d 5941 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑅) · (-1↑𝑅)) = ((-1↑𝑅) · (1 / (-1↑𝑅))))
228210zcnd 9466 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑅) ∈ ℂ)
229223, 224, 35expap0d 10788 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑅) # 0)
230228, 229recidapd 8827 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑅) · (1 / (-1↑𝑅))) = 1)
231227, 230eqtrd 2229 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑅) · (-1↑𝑅)) = 1)
232231oveq1d 5940 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · (-1↑𝑅)) · 𝑅) = (1 · 𝑅))
233228, 228, 36mulassd 8067 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · (-1↑𝑅)) · 𝑅) = ((-1↑𝑅) · ((-1↑𝑅) · 𝑅)))
23436mullidd 8061 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (1 · 𝑅) = 𝑅)
235232, 233, 2343eqtr3d 2237 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑅) · ((-1↑𝑅) · 𝑅)) = 𝑅)
236235breq2d 4046 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 ∥ ((-1↑𝑅) · ((-1↑𝑅) · 𝑅)) ↔ 𝑃𝑅))
237215, 236mtbird 674 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ¬ 𝑃 ∥ ((-1↑𝑅) · ((-1↑𝑅) · 𝑅)))
238 dvdsmultr2 12015 . . . . . . . . . . 11 ((𝑃 ∈ ℤ ∧ (-1↑𝑅) ∈ ℤ ∧ ((-1↑𝑅) · 𝑅) ∈ ℤ) → (𝑃 ∥ ((-1↑𝑅) · 𝑅) → 𝑃 ∥ ((-1↑𝑅) · ((-1↑𝑅) · 𝑅))))
239110, 210, 211, 238syl3anc 1249 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 ∥ ((-1↑𝑅) · 𝑅) → 𝑃 ∥ ((-1↑𝑅) · ((-1↑𝑅) · 𝑅))))
240237, 239mtod 664 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ¬ 𝑃 ∥ ((-1↑𝑅) · 𝑅))
241 dvdsval3 11973 . . . . . . . . . 10 ((𝑃 ∈ ℕ ∧ ((-1↑𝑅) · 𝑅) ∈ ℤ) → (𝑃 ∥ ((-1↑𝑅) · 𝑅) ↔ (((-1↑𝑅) · 𝑅) mod 𝑃) = 0))
24229, 211, 241syl2anc 411 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 ∥ ((-1↑𝑅) · 𝑅) ↔ (((-1↑𝑅) · 𝑅) mod 𝑃) = 0))
243240, 242mtbid 673 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ¬ (((-1↑𝑅) · 𝑅) mod 𝑃) = 0)
244 elnn0 9268 . . . . . . . . 9 ((((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℕ0 ↔ ((((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℕ ∨ (((-1↑𝑅) · 𝑅) mod 𝑃) = 0))
245212, 244sylib 122 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℕ ∨ (((-1↑𝑅) · 𝑅) mod 𝑃) = 0))
246243, 245ecased 1360 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℕ)
247246nngt0d 9051 . . . . . 6 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 0 < (((-1↑𝑅) · 𝑅) mod 𝑃))
248213, 103, 247, 105divgt0d 8979 . . . . 5 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 0 < ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))
249 elnnz 9353 . . . . 5 (((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) ∈ ℕ ↔ (((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) ∈ ℤ ∧ 0 < ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)))
250208, 248, 249sylanbrc 417 . . . 4 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) ∈ ℕ)
251250nnge1d 9050 . . 3 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 1 ≤ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))
252 zmodfz 10455 . . . . . 6 ((((-1↑𝑅) · 𝑅) ∈ ℤ ∧ 𝑃 ∈ ℕ) → (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ (0...(𝑃 − 1)))
253211, 29, 252syl2anc 411 . . . . 5 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ (0...(𝑃 − 1)))
254 elfzle2 10120 . . . . 5 ((((-1↑𝑅) · 𝑅) mod 𝑃) ∈ (0...(𝑃 − 1)) → (((-1↑𝑅) · 𝑅) mod 𝑃) ≤ (𝑃 − 1))
255253, 254syl 14 . . . 4 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · 𝑅) mod 𝑃) ≤ (𝑃 − 1))
256 lediv1 8913 . . . . 5 (((((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℝ ∧ (𝑃 − 1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((((-1↑𝑅) · 𝑅) mod 𝑃) ≤ (𝑃 − 1) ↔ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) ≤ ((𝑃 − 1) / 2)))
257213, 101, 103, 105, 256syl112anc 1253 . . . 4 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((((-1↑𝑅) · 𝑅) mod 𝑃) ≤ (𝑃 − 1) ↔ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) ≤ ((𝑃 − 1) / 2)))
258255, 257mpbid 147 . . 3 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) ≤ ((𝑃 − 1) / 2))
2591, 6, 208, 251, 258elfzd 10108 . 2 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) ∈ (1...((𝑃 − 1) / 2)))
260 lgseisen.5 . 2 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))
261259, 260fmptd 5719 1 (𝜑𝑀:(1...((𝑃 − 1) / 2))⟶(1...((𝑃 − 1) / 2)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2167  wne 2367  cdif 3154  {csn 3623   class class class wbr 4034  cmpt 4095  wf 5255  cfv 5259  (class class class)co 5925  cc 7894  cr 7895  0cc0 7896  1c1 7897   + caddc 7899   · cmul 7901   < clt 8078  cle 8079  cmin 8214  -cneg 8215   # cap 8625   / cdiv 8716  cn 9007  2c2 9058  0cn0 9266  cz 9343  cuz 9618  cq 9710  ...cfz 10100   mod cmo 10431  cexp 10647  cdvds 11969   gcd cgcd 12145  cprime 12300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-2o 6484  df-er 6601  df-en 6809  df-sup 7059  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-dvds 11970  df-gcd 12146  df-prm 12301
This theorem is referenced by:  lgseisenlem2  15396  lgseisenlem3  15397
  Copyright terms: Public domain W3C validator