Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eq0 | GIF version |
Description: The empty set has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by NM, 29-Aug-1993.) |
Ref | Expression |
---|---|
eq0 | ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2308 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2308 | . . 3 ⊢ Ⅎ𝑥∅ | |
3 | 1, 2 | cleqf 2333 | . 2 ⊢ (𝐴 = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∅)) |
4 | noel 3413 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
5 | 4 | nbn 689 | . . 3 ⊢ (¬ 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∅)) |
6 | 5 | albii 1458 | . 2 ⊢ (∀𝑥 ¬ 𝑥 ∈ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∅)) |
7 | 3, 6 | bitr4i 186 | 1 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 104 ∀wal 1341 = wceq 1343 ∈ wcel 2136 ∅c0 3409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-nul 3410 |
This theorem is referenced by: notm0 3429 nel0 3430 0el 3431 rabeq0 3438 abeq0 3439 ssdif0im 3473 inssdif0im 3476 ralf0 3512 snprc 3641 uni0b 3814 disjiun 3977 0ex 4109 dm0 4818 reldm0 4822 dmsn0 5071 dmsn0el 5073 fzo0 10103 fzouzdisj 10115 |
Copyright terms: Public domain | W3C validator |