| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eq0 | GIF version | ||
| Description: The empty set has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by NM, 29-Aug-1993.) |
| Ref | Expression |
|---|---|
| eq0 | ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2372 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2372 | . . 3 ⊢ Ⅎ𝑥∅ | |
| 3 | 1, 2 | cleqf 2397 | . 2 ⊢ (𝐴 = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∅)) |
| 4 | noel 3495 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
| 5 | 4 | nbn 704 | . . 3 ⊢ (¬ 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∅)) |
| 6 | 5 | albii 1516 | . 2 ⊢ (∀𝑥 ¬ 𝑥 ∈ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∅)) |
| 7 | 3, 6 | bitr4i 187 | 1 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 ∀wal 1393 = wceq 1395 ∈ wcel 2200 ∅c0 3491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-nul 3492 |
| This theorem is referenced by: notm0 3512 nel0 3513 0el 3514 rabeq0 3521 abeq0 3522 ssdif0im 3556 inssdif0im 3559 ralf0 3594 snprc 3731 uni0b 3912 disjiun 4077 0ex 4210 dm0 4934 reldm0 4938 dmsn0 5192 dmsn0el 5194 fzo0 10354 fzouzdisj 10366 |
| Copyright terms: Public domain | W3C validator |