| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eq0 | GIF version | ||
| Description: The empty set has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by NM, 29-Aug-1993.) |
| Ref | Expression |
|---|---|
| eq0 | ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2349 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2349 | . . 3 ⊢ Ⅎ𝑥∅ | |
| 3 | 1, 2 | cleqf 2374 | . 2 ⊢ (𝐴 = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∅)) |
| 4 | noel 3466 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
| 5 | 4 | nbn 701 | . . 3 ⊢ (¬ 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∅)) |
| 6 | 5 | albii 1494 | . 2 ⊢ (∀𝑥 ¬ 𝑥 ∈ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∅)) |
| 7 | 3, 6 | bitr4i 187 | 1 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 ∀wal 1371 = wceq 1373 ∈ wcel 2177 ∅c0 3462 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3170 df-nul 3463 |
| This theorem is referenced by: notm0 3483 nel0 3484 0el 3485 rabeq0 3492 abeq0 3493 ssdif0im 3527 inssdif0im 3530 ralf0 3565 snprc 3700 uni0b 3878 disjiun 4043 0ex 4176 dm0 4898 reldm0 4902 dmsn0 5156 dmsn0el 5158 fzo0 10305 fzouzdisj 10317 |
| Copyright terms: Public domain | W3C validator |