ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eq0 GIF version

Theorem eq0 3469
Description: The empty set has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by NM, 29-Aug-1993.)
Assertion
Ref Expression
eq0 (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem eq0
StepHypRef Expression
1 nfcv 2339 . . 3 𝑥𝐴
2 nfcv 2339 . . 3 𝑥
31, 2cleqf 2364 . 2 (𝐴 = ∅ ↔ ∀𝑥(𝑥𝐴𝑥 ∈ ∅))
4 noel 3454 . . . 4 ¬ 𝑥 ∈ ∅
54nbn 700 . . 3 𝑥𝐴 ↔ (𝑥𝐴𝑥 ∈ ∅))
65albii 1484 . 2 (∀𝑥 ¬ 𝑥𝐴 ↔ ∀𝑥(𝑥𝐴𝑥 ∈ ∅))
73, 6bitr4i 187 1 (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105  wal 1362   = wceq 1364  wcel 2167  c0 3450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-nul 3451
This theorem is referenced by:  notm0  3471  nel0  3472  0el  3473  rabeq0  3480  abeq0  3481  ssdif0im  3515  inssdif0im  3518  ralf0  3553  snprc  3687  uni0b  3864  disjiun  4028  0ex  4160  dm0  4880  reldm0  4884  dmsn0  5137  dmsn0el  5139  fzo0  10241  fzouzdisj  10253
  Copyright terms: Public domain W3C validator