| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dm0rn0 | GIF version | ||
| Description: An empty domain implies an empty range. For a similar theorem for whether the domain and range are inhabited, see dmmrnm 4939. (Contributed by NM, 21-May-1998.) |
| Ref | Expression |
|---|---|
| dm0rn0 | ⊢ (dom 𝐴 = ∅ ↔ ran 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alnex 1545 | . . . . . 6 ⊢ (∀𝑥 ¬ ∃𝑦 𝑥𝐴𝑦 ↔ ¬ ∃𝑥∃𝑦 𝑥𝐴𝑦) | |
| 2 | excom 1710 | . . . . . 6 ⊢ (∃𝑥∃𝑦 𝑥𝐴𝑦 ↔ ∃𝑦∃𝑥 𝑥𝐴𝑦) | |
| 3 | 1, 2 | xchbinx 686 | . . . . 5 ⊢ (∀𝑥 ¬ ∃𝑦 𝑥𝐴𝑦 ↔ ¬ ∃𝑦∃𝑥 𝑥𝐴𝑦) |
| 4 | alnex 1545 | . . . . 5 ⊢ (∀𝑦 ¬ ∃𝑥 𝑥𝐴𝑦 ↔ ¬ ∃𝑦∃𝑥 𝑥𝐴𝑦) | |
| 5 | 3, 4 | bitr4i 187 | . . . 4 ⊢ (∀𝑥 ¬ ∃𝑦 𝑥𝐴𝑦 ↔ ∀𝑦 ¬ ∃𝑥 𝑥𝐴𝑦) |
| 6 | noel 3495 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
| 7 | 6 | nbn 704 | . . . . 5 ⊢ (¬ ∃𝑦 𝑥𝐴𝑦 ↔ (∃𝑦 𝑥𝐴𝑦 ↔ 𝑥 ∈ ∅)) |
| 8 | 7 | albii 1516 | . . . 4 ⊢ (∀𝑥 ¬ ∃𝑦 𝑥𝐴𝑦 ↔ ∀𝑥(∃𝑦 𝑥𝐴𝑦 ↔ 𝑥 ∈ ∅)) |
| 9 | noel 3495 | . . . . . 6 ⊢ ¬ 𝑦 ∈ ∅ | |
| 10 | 9 | nbn 704 | . . . . 5 ⊢ (¬ ∃𝑥 𝑥𝐴𝑦 ↔ (∃𝑥 𝑥𝐴𝑦 ↔ 𝑦 ∈ ∅)) |
| 11 | 10 | albii 1516 | . . . 4 ⊢ (∀𝑦 ¬ ∃𝑥 𝑥𝐴𝑦 ↔ ∀𝑦(∃𝑥 𝑥𝐴𝑦 ↔ 𝑦 ∈ ∅)) |
| 12 | 5, 8, 11 | 3bitr3i 210 | . . 3 ⊢ (∀𝑥(∃𝑦 𝑥𝐴𝑦 ↔ 𝑥 ∈ ∅) ↔ ∀𝑦(∃𝑥 𝑥𝐴𝑦 ↔ 𝑦 ∈ ∅)) |
| 13 | abeq1 2339 | . . 3 ⊢ ({𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = ∅ ↔ ∀𝑥(∃𝑦 𝑥𝐴𝑦 ↔ 𝑥 ∈ ∅)) | |
| 14 | abeq1 2339 | . . 3 ⊢ ({𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = ∅ ↔ ∀𝑦(∃𝑥 𝑥𝐴𝑦 ↔ 𝑦 ∈ ∅)) | |
| 15 | 12, 13, 14 | 3bitr4i 212 | . 2 ⊢ ({𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = ∅ ↔ {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = ∅) |
| 16 | df-dm 4726 | . . 3 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} | |
| 17 | 16 | eqeq1i 2237 | . 2 ⊢ (dom 𝐴 = ∅ ↔ {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = ∅) |
| 18 | dfrn2 4907 | . . 3 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} | |
| 19 | 18 | eqeq1i 2237 | . 2 ⊢ (ran 𝐴 = ∅ ↔ {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = ∅) |
| 20 | 15, 17, 19 | 3bitr4i 212 | 1 ⊢ (dom 𝐴 = ∅ ↔ ran 𝐴 = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 ∀wal 1393 = wceq 1395 ∃wex 1538 ∈ wcel 2200 {cab 2215 ∅c0 3491 class class class wbr 4082 dom cdm 4716 ran crn 4717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-cnv 4724 df-dm 4726 df-rn 4727 |
| This theorem is referenced by: rn0 4976 relrn0 4982 imadisj 5086 ndmima 5101 f00 5513 f0rn0 5516 2nd0 6281 map0b 6824 |
| Copyright terms: Public domain | W3C validator |