ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldm0 GIF version

Theorem reldm0 4752
Description: A relation is empty iff its domain is empty. (Contributed by NM, 15-Sep-2004.)
Assertion
Ref Expression
reldm0 (Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅))

Proof of Theorem reldm0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rel0 4659 . . 3 Rel ∅
2 eqrel 4623 . . 3 ((Rel 𝐴 ∧ Rel ∅) → (𝐴 = ∅ ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ∅)))
31, 2mpan2 421 . 2 (Rel 𝐴 → (𝐴 = ∅ ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ∅)))
4 eq0 3376 . . 3 (dom 𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom 𝐴)
5 alnex 1475 . . . . . 6 (∀𝑦 ¬ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ¬ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
6 vex 2684 . . . . . . 7 𝑥 ∈ V
76eldm2 4732 . . . . . 6 (𝑥 ∈ dom 𝐴 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
85, 7xchbinxr 672 . . . . 5 (∀𝑦 ¬ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ¬ 𝑥 ∈ dom 𝐴)
9 noel 3362 . . . . . . 7 ¬ ⟨𝑥, 𝑦⟩ ∈ ∅
109nbn 688 . . . . . 6 (¬ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ∅))
1110albii 1446 . . . . 5 (∀𝑦 ¬ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ∅))
128, 11bitr3i 185 . . . 4 𝑥 ∈ dom 𝐴 ↔ ∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ∅))
1312albii 1446 . . 3 (∀𝑥 ¬ 𝑥 ∈ dom 𝐴 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ∅))
144, 13bitr2i 184 . 2 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ∅) ↔ dom 𝐴 = ∅)
153, 14syl6bb 195 1 (Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  wal 1329   = wceq 1331  wex 1468  wcel 1480  c0 3358  cop 3525  dom cdm 4534  Rel wrel 4539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-v 2683  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-br 3925  df-opab 3985  df-xp 4540  df-rel 4541  df-dm 4544
This theorem is referenced by:  relrn0  4796  fnresdisj  5228  fn0  5237  fsnunfv  5614  setsresg  11986  metn0  12536
  Copyright terms: Public domain W3C validator