| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reldm0 | GIF version | ||
| Description: A relation is empty iff its domain is empty. (Contributed by NM, 15-Sep-2004.) |
| Ref | Expression |
|---|---|
| reldm0 | ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rel0 4788 | . . 3 ⊢ Rel ∅ | |
| 2 | eqrel 4752 | . . 3 ⊢ ((Rel 𝐴 ∧ Rel ∅) → (𝐴 = ∅ ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ∅))) | |
| 3 | 1, 2 | mpan2 425 | . 2 ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ∅))) |
| 4 | eq0 3469 | . . 3 ⊢ (dom 𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom 𝐴) | |
| 5 | alnex 1513 | . . . . . 6 ⊢ (∀𝑦 ¬ 〈𝑥, 𝑦〉 ∈ 𝐴 ↔ ¬ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) | |
| 6 | vex 2766 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 7 | 6 | eldm2 4864 | . . . . . 6 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
| 8 | 5, 7 | xchbinxr 684 | . . . . 5 ⊢ (∀𝑦 ¬ 〈𝑥, 𝑦〉 ∈ 𝐴 ↔ ¬ 𝑥 ∈ dom 𝐴) |
| 9 | noel 3454 | . . . . . . 7 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
| 10 | 9 | nbn 700 | . . . . . 6 ⊢ (¬ 〈𝑥, 𝑦〉 ∈ 𝐴 ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ∅)) |
| 11 | 10 | albii 1484 | . . . . 5 ⊢ (∀𝑦 ¬ 〈𝑥, 𝑦〉 ∈ 𝐴 ↔ ∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ∅)) |
| 12 | 8, 11 | bitr3i 186 | . . . 4 ⊢ (¬ 𝑥 ∈ dom 𝐴 ↔ ∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ∅)) |
| 13 | 12 | albii 1484 | . . 3 ⊢ (∀𝑥 ¬ 𝑥 ∈ dom 𝐴 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ∅)) |
| 14 | 4, 13 | bitr2i 185 | . 2 ⊢ (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ∅) ↔ dom 𝐴 = ∅) |
| 15 | 3, 14 | bitrdi 196 | 1 ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∀wal 1362 = wceq 1364 ∃wex 1506 ∈ wcel 2167 ∅c0 3450 〈cop 3625 dom cdm 4663 Rel wrel 4668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-dm 4673 |
| This theorem is referenced by: relrn0 4928 fnresdisj 5368 fn0 5377 fsnunfv 5763 setsresg 12716 metn0 14614 |
| Copyright terms: Public domain | W3C validator |