ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neeq2 GIF version

Theorem neeq2 2378
Description: Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.)
Assertion
Ref Expression
neeq2 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))

Proof of Theorem neeq2
StepHypRef Expression
1 eqeq2 2203 . . 3 (𝐴 = 𝐵 → (𝐶 = 𝐴𝐶 = 𝐵))
21notbid 668 . 2 (𝐴 = 𝐵 → (¬ 𝐶 = 𝐴 ↔ ¬ 𝐶 = 𝐵))
3 df-ne 2365 . 2 (𝐶𝐴 ↔ ¬ 𝐶 = 𝐴)
4 df-ne 2365 . 2 (𝐶𝐵 ↔ ¬ 𝐶 = 𝐵)
52, 3, 43bitr4g 223 1 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105   = wceq 1364  wne 2364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1458  ax-gen 1460  ax-4 1521  ax-17 1537  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-cleq 2186  df-ne 2365
This theorem is referenced by:  neeq2i  2380  neeq2d  2383  disji2  4022  fodjuomnilemdc  7203  netap  7314  2oneel  7316  2omotaplemap  7317  2omotaplemst  7318  exmidapne  7320  xrlttri3  9863  isnzr2  13680  neapmkv  15558  neap0mkv  15559  ltlenmkv  15560
  Copyright terms: Public domain W3C validator