| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neeq2 | GIF version | ||
| Description: Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.) |
| Ref | Expression |
|---|---|
| neeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2214 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) | |
| 2 | 1 | notbid 668 | . 2 ⊢ (𝐴 = 𝐵 → (¬ 𝐶 = 𝐴 ↔ ¬ 𝐶 = 𝐵)) |
| 3 | df-ne 2376 | . 2 ⊢ (𝐶 ≠ 𝐴 ↔ ¬ 𝐶 = 𝐴) | |
| 4 | df-ne 2376 | . 2 ⊢ (𝐶 ≠ 𝐵 ↔ ¬ 𝐶 = 𝐵) | |
| 5 | 2, 3, 4 | 3bitr4g 223 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 = wceq 1372 ≠ wne 2375 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 df-ne 2376 |
| This theorem is referenced by: neeq2i 2391 neeq2d 2394 disji2 4036 fodjuomnilemdc 7245 netap 7365 2oneel 7367 2omotaplemap 7368 2omotaplemst 7369 exmidapne 7371 xrlttri3 9918 hashdmprop2dom 10987 fun2dmnop0 10990 isnzr2 13888 neapmkv 15940 neap0mkv 15941 ltlenmkv 15942 |
| Copyright terms: Public domain | W3C validator |