![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > neeq2 | GIF version |
Description: Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.) |
Ref | Expression |
---|---|
neeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2203 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) | |
2 | 1 | notbid 668 | . 2 ⊢ (𝐴 = 𝐵 → (¬ 𝐶 = 𝐴 ↔ ¬ 𝐶 = 𝐵)) |
3 | df-ne 2365 | . 2 ⊢ (𝐶 ≠ 𝐴 ↔ ¬ 𝐶 = 𝐴) | |
4 | df-ne 2365 | . 2 ⊢ (𝐶 ≠ 𝐵 ↔ ¬ 𝐶 = 𝐵) | |
5 | 2, 3, 4 | 3bitr4g 223 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 = wceq 1364 ≠ wne 2364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-ne 2365 |
This theorem is referenced by: neeq2i 2380 neeq2d 2383 disji2 4022 fodjuomnilemdc 7203 netap 7314 2oneel 7316 2omotaplemap 7317 2omotaplemst 7318 exmidapne 7320 xrlttri3 9863 isnzr2 13680 neapmkv 15558 neap0mkv 15559 ltlenmkv 15560 |
Copyright terms: Public domain | W3C validator |