ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neeq2 GIF version

Theorem neeq2 2389
Description: Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.)
Assertion
Ref Expression
neeq2 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))

Proof of Theorem neeq2
StepHypRef Expression
1 eqeq2 2214 . . 3 (𝐴 = 𝐵 → (𝐶 = 𝐴𝐶 = 𝐵))
21notbid 668 . 2 (𝐴 = 𝐵 → (¬ 𝐶 = 𝐴 ↔ ¬ 𝐶 = 𝐵))
3 df-ne 2376 . 2 (𝐶𝐴 ↔ ¬ 𝐶 = 𝐴)
4 df-ne 2376 . 2 (𝐶𝐵 ↔ ¬ 𝐶 = 𝐵)
52, 3, 43bitr4g 223 1 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105   = wceq 1372  wne 2375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1469  ax-gen 1471  ax-4 1532  ax-17 1548  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-cleq 2197  df-ne 2376
This theorem is referenced by:  neeq2i  2391  neeq2d  2394  disji2  4036  fodjuomnilemdc  7228  netap  7348  2oneel  7350  2omotaplemap  7351  2omotaplemst  7352  exmidapne  7354  xrlttri3  9901  isnzr2  13864  neapmkv  15871  neap0mkv  15872  ltlenmkv  15873
  Copyright terms: Public domain W3C validator