ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neeq2 GIF version

Theorem neeq2 2391
Description: Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.)
Assertion
Ref Expression
neeq2 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))

Proof of Theorem neeq2
StepHypRef Expression
1 eqeq2 2216 . . 3 (𝐴 = 𝐵 → (𝐶 = 𝐴𝐶 = 𝐵))
21notbid 669 . 2 (𝐴 = 𝐵 → (¬ 𝐶 = 𝐴 ↔ ¬ 𝐶 = 𝐵))
3 df-ne 2378 . 2 (𝐶𝐴 ↔ ¬ 𝐶 = 𝐴)
4 df-ne 2378 . 2 (𝐶𝐵 ↔ ¬ 𝐶 = 𝐵)
52, 3, 43bitr4g 223 1 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105   = wceq 1373  wne 2377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1471  ax-gen 1473  ax-4 1534  ax-17 1550  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-cleq 2199  df-ne 2378
This theorem is referenced by:  neeq2i  2393  neeq2d  2396  disji2  4043  fodjuomnilemdc  7261  netap  7386  2oneel  7388  2omotaplemap  7389  2omotaplemst  7390  exmidapne  7392  xrlttri3  9939  hashdmprop2dom  11011  fun2dmnop0  11014  isnzr2  14021  neapmkv  16148  neap0mkv  16149  ltlenmkv  16150
  Copyright terms: Public domain W3C validator