| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neeq2 | GIF version | ||
| Description: Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.) |
| Ref | Expression |
|---|---|
| neeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2239 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) | |
| 2 | 1 | notbid 671 | . 2 ⊢ (𝐴 = 𝐵 → (¬ 𝐶 = 𝐴 ↔ ¬ 𝐶 = 𝐵)) |
| 3 | df-ne 2401 | . 2 ⊢ (𝐶 ≠ 𝐴 ↔ ¬ 𝐶 = 𝐴) | |
| 4 | df-ne 2401 | . 2 ⊢ (𝐶 ≠ 𝐵 ↔ ¬ 𝐶 = 𝐵) | |
| 5 | 2, 3, 4 | 3bitr4g 223 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 = wceq 1395 ≠ wne 2400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-ne 2401 |
| This theorem is referenced by: neeq2i 2416 neeq2d 2419 disji2 4074 fodjuomnilemdc 7307 netap 7436 2oneel 7438 2omotaplemap 7439 2omotaplemst 7440 exmidapne 7442 xrlttri3 9989 hashdmprop2dom 11061 fun2dmnop0 11064 isnzr2 14142 umgrvad2edg 16003 neapmkv 16395 neap0mkv 16396 ltlenmkv 16397 |
| Copyright terms: Public domain | W3C validator |