| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neeq2 | GIF version | ||
| Description: Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.) |
| Ref | Expression |
|---|---|
| neeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2216 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) | |
| 2 | 1 | notbid 669 | . 2 ⊢ (𝐴 = 𝐵 → (¬ 𝐶 = 𝐴 ↔ ¬ 𝐶 = 𝐵)) |
| 3 | df-ne 2378 | . 2 ⊢ (𝐶 ≠ 𝐴 ↔ ¬ 𝐶 = 𝐴) | |
| 4 | df-ne 2378 | . 2 ⊢ (𝐶 ≠ 𝐵 ↔ ¬ 𝐶 = 𝐵) | |
| 5 | 2, 3, 4 | 3bitr4g 223 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 = wceq 1373 ≠ wne 2377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 df-ne 2378 |
| This theorem is referenced by: neeq2i 2393 neeq2d 2396 disji2 4043 fodjuomnilemdc 7261 netap 7386 2oneel 7388 2omotaplemap 7389 2omotaplemst 7390 exmidapne 7392 xrlttri3 9939 hashdmprop2dom 11011 fun2dmnop0 11014 isnzr2 14021 neapmkv 16148 neap0mkv 16149 ltlenmkv 16150 |
| Copyright terms: Public domain | W3C validator |