| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neeq2 | GIF version | ||
| Description: Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.) |
| Ref | Expression |
|---|---|
| neeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2214 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) | |
| 2 | 1 | notbid 668 | . 2 ⊢ (𝐴 = 𝐵 → (¬ 𝐶 = 𝐴 ↔ ¬ 𝐶 = 𝐵)) |
| 3 | df-ne 2376 | . 2 ⊢ (𝐶 ≠ 𝐴 ↔ ¬ 𝐶 = 𝐴) | |
| 4 | df-ne 2376 | . 2 ⊢ (𝐶 ≠ 𝐵 ↔ ¬ 𝐶 = 𝐵) | |
| 5 | 2, 3, 4 | 3bitr4g 223 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 = wceq 1372 ≠ wne 2375 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 df-ne 2376 |
| This theorem is referenced by: neeq2i 2391 neeq2d 2394 disji2 4036 fodjuomnilemdc 7228 netap 7348 2oneel 7350 2omotaplemap 7351 2omotaplemst 7352 exmidapne 7354 xrlttri3 9901 isnzr2 13864 neapmkv 15871 neap0mkv 15872 ltlenmkv 15873 |
| Copyright terms: Public domain | W3C validator |