ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neeq1i GIF version

Theorem neeq1i 2266
Description: Inference for inequality. (Contributed by NM, 29-Apr-2005.)
Hypothesis
Ref Expression
neeq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
neeq1i (𝐴𝐶𝐵𝐶)

Proof of Theorem neeq1i
StepHypRef Expression
1 neeq1i.1 . 2 𝐴 = 𝐵
2 neeq1 2264 . 2 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
31, 2ax-mp 7 1 (𝐴𝐶𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  wb 103   = wceq 1287  wne 2251
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-5 1379  ax-gen 1381  ax-4 1443  ax-17 1462  ax-ext 2067
This theorem depends on definitions:  df-bi 115  df-cleq 2078  df-ne 2252
This theorem is referenced by:  neeq12i  2268  eqnetri  2274  syl5eqner  2282  rabn0r  3298
  Copyright terms: Public domain W3C validator