ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neeq12i GIF version

Theorem neeq12i 2364
Description: Inference for inequality. (Contributed by NM, 24-Jul-2012.)
Hypotheses
Ref Expression
neeq1i.1 𝐴 = 𝐵
neeq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
neeq12i (𝐴𝐶𝐵𝐷)

Proof of Theorem neeq12i
StepHypRef Expression
1 neeq12i.2 . . 3 𝐶 = 𝐷
21neeq2i 2363 . 2 (𝐴𝐶𝐴𝐷)
3 neeq1i.1 . . 3 𝐴 = 𝐵
43neeq1i 2362 . 2 (𝐴𝐷𝐵𝐷)
52, 4bitri 184 1 (𝐴𝐶𝐵𝐷)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1353  wne 2347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-5 1447  ax-gen 1449  ax-4 1510  ax-17 1526  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-cleq 2170  df-ne 2348
This theorem is referenced by:  3netr3g  2381  3netr4g  2382  starvndxnbasendx  12602  starvndxnplusgndx  12603  starvndxnmulrndx  12604  scandxnbasendx  12614  scandxnplusgndx  12615  scandxnmulrndx  12616  vscandxnbasendx  12619  vscandxnplusgndx  12620  vscandxnmulrndx  12621  vscandxnscandx  12622  ipndxnbasendx  12632  ipndxnplusgndx  12633  ipndxnmulrndx  12634  slotsdifipndx  12635  tsetndxnplusgndx  12652  tsetndxnmulrndx  12653  tsetndxnstarvndx  12654  slotstnscsi  12655  plendxnplusgndx  12666  plendxnmulrndx  12667  plendxnscandx  12668  plendxnvscandx  12669  slotsdifplendx  12670  dsndxnplusgndx  12677  dsndxnmulrndx  12678  slotsdnscsi  12679  dsndxntsetndx  12680  slotsdifdsndx  12681  unifndxntsetndx  12687  slotsdifunifndx  12688  setsmsbasg  14064  setsmsdsg  14065
  Copyright terms: Public domain W3C validator