ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neeq12i GIF version

Theorem neeq12i 2392
Description: Inference for inequality. (Contributed by NM, 24-Jul-2012.)
Hypotheses
Ref Expression
neeq1i.1 𝐴 = 𝐵
neeq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
neeq12i (𝐴𝐶𝐵𝐷)

Proof of Theorem neeq12i
StepHypRef Expression
1 neeq12i.2 . . 3 𝐶 = 𝐷
21neeq2i 2391 . 2 (𝐴𝐶𝐴𝐷)
3 neeq1i.1 . . 3 𝐴 = 𝐵
43neeq1i 2390 . 2 (𝐴𝐷𝐵𝐷)
52, 4bitri 184 1 (𝐴𝐶𝐵𝐷)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1372  wne 2375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1469  ax-gen 1471  ax-4 1532  ax-17 1548  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-cleq 2197  df-ne 2376
This theorem is referenced by:  3netr3g  2409  3netr4g  2410  starvndxnbasendx  12892  starvndxnplusgndx  12893  starvndxnmulrndx  12894  scandxnbasendx  12904  scandxnplusgndx  12905  scandxnmulrndx  12906  vscandxnbasendx  12909  vscandxnplusgndx  12910  vscandxnmulrndx  12911  vscandxnscandx  12912  ipndxnbasendx  12922  ipndxnplusgndx  12923  ipndxnmulrndx  12924  slotsdifipndx  12925  tsetndxnplusgndx  12942  tsetndxnmulrndx  12943  tsetndxnstarvndx  12944  slotstnscsi  12945  plendxnplusgndx  12956  plendxnmulrndx  12957  plendxnscandx  12958  plendxnvscandx  12959  slotsdifplendx  12960  basendxnocndx  12963  plendxnocndx  12964  dsndxnplusgndx  12971  dsndxnmulrndx  12972  slotsdnscsi  12973  dsndxntsetndx  12974  slotsdifdsndx  12975  unifndxntsetndx  12981  slotsdifunifndx  12982  setsmsbasg  14869  setsmsdsg  14870
  Copyright terms: Public domain W3C validator