Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > neeq12i | GIF version |
Description: Inference for inequality. (Contributed by NM, 24-Jul-2012.) |
Ref | Expression |
---|---|
neeq1i.1 | ⊢ 𝐴 = 𝐵 |
neeq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
neeq12i | ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
2 | 1 | neeq2i 2352 | . 2 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐴 ≠ 𝐷) |
3 | neeq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
4 | 3 | neeq1i 2351 | . 2 ⊢ (𝐴 ≠ 𝐷 ↔ 𝐵 ≠ 𝐷) |
5 | 2, 4 | bitri 183 | 1 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐷) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1343 ≠ wne 2336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-ne 2337 |
This theorem is referenced by: 3netr3g 2370 3netr4g 2371 setsmsbasg 13119 setsmsdsg 13120 |
Copyright terms: Public domain | W3C validator |