Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  exmidsbthrlem GIF version

Theorem exmidsbthrlem 11381
Description: Lemma for exmidsbthr 11382. (Contributed by Jim Kingdon, 11-Aug-2022.)
Hypothesis
Ref Expression
exmidsbthrlem.s 𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1𝑜, (𝑝 𝑖))))
Assertion
Ref Expression
exmidsbthrlem (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → EXMID)
Distinct variable groups:   𝑆,𝑖   𝑖,𝑝   𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑝)

Proof of Theorem exmidsbthrlem
Dummy variables 𝑎 𝑏 𝑘 𝑧 𝑓 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 107 . . . . . . 7 ((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) → ∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦))
2 nninfex 11370 . . . . . . . . . 10 ∈ V
3 fconstmpt 4455 . . . . . . . . . . . . . . 15 (ω × {∅}) = (𝑖 ∈ ω ↦ ∅)
4 0nninf 11362 . . . . . . . . . . . . . . 15 (ω × {∅}) ∈ ℕ
53, 4eqeltrri 2158 . . . . . . . . . . . . . 14 (𝑖 ∈ ω ↦ ∅) ∈ ℕ
65fconst6 5175 . . . . . . . . . . . . 13 (𝑧 × {(𝑖 ∈ ω ↦ ∅)}):𝑧⟶ℕ
76a1i 9 . . . . . . . . . . . 12 (𝑧 ⊆ {∅} → (𝑧 × {(𝑖 ∈ ω ↦ ∅)}):𝑧⟶ℕ)
8 ssel 3008 . . . . . . . . . . . . . . . . . 18 (𝑧 ⊆ {∅} → (𝑢𝑧𝑢 ∈ {∅}))
9 elsni 3449 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ {∅} → 𝑢 = ∅)
108, 9syl6 33 . . . . . . . . . . . . . . . . 17 (𝑧 ⊆ {∅} → (𝑢𝑧𝑢 = ∅))
11 ssel 3008 . . . . . . . . . . . . . . . . . 18 (𝑧 ⊆ {∅} → (𝑣𝑧𝑣 ∈ {∅}))
12 elsni 3449 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ {∅} → 𝑣 = ∅)
1311, 12syl6 33 . . . . . . . . . . . . . . . . 17 (𝑧 ⊆ {∅} → (𝑣𝑧𝑣 = ∅))
1410, 13anim12d 328 . . . . . . . . . . . . . . . 16 (𝑧 ⊆ {∅} → ((𝑢𝑧𝑣𝑧) → (𝑢 = ∅ ∧ 𝑣 = ∅)))
15 eqtr3 2104 . . . . . . . . . . . . . . . 16 ((𝑢 = ∅ ∧ 𝑣 = ∅) → 𝑢 = 𝑣)
1614, 15syl6 33 . . . . . . . . . . . . . . 15 (𝑧 ⊆ {∅} → ((𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣))
1716imp 122 . . . . . . . . . . . . . 14 ((𝑧 ⊆ {∅} ∧ (𝑢𝑧𝑣𝑧)) → 𝑢 = 𝑣)
1817a1d 22 . . . . . . . . . . . . 13 ((𝑧 ⊆ {∅} ∧ (𝑢𝑧𝑣𝑧)) → (((𝑧 × {(𝑖 ∈ ω ↦ ∅)})‘𝑢) = ((𝑧 × {(𝑖 ∈ ω ↦ ∅)})‘𝑣) → 𝑢 = 𝑣))
1918ralrimivva 2451 . . . . . . . . . . . 12 (𝑧 ⊆ {∅} → ∀𝑢𝑧𝑣𝑧 (((𝑧 × {(𝑖 ∈ ω ↦ ∅)})‘𝑢) = ((𝑧 × {(𝑖 ∈ ω ↦ ∅)})‘𝑣) → 𝑢 = 𝑣))
20 dff13 5510 . . . . . . . . . . . 12 ((𝑧 × {(𝑖 ∈ ω ↦ ∅)}):𝑧1-1→ℕ ↔ ((𝑧 × {(𝑖 ∈ ω ↦ ∅)}):𝑧⟶ℕ ∧ ∀𝑢𝑧𝑣𝑧 (((𝑧 × {(𝑖 ∈ ω ↦ ∅)})‘𝑢) = ((𝑧 × {(𝑖 ∈ ω ↦ ∅)})‘𝑣) → 𝑢 = 𝑣)))
217, 19, 20sylanbrc 408 . . . . . . . . . . 11 (𝑧 ⊆ {∅} → (𝑧 × {(𝑖 ∈ ω ↦ ∅)}):𝑧1-1→ℕ)
22 exmidsbthrlem.s . . . . . . . . . . . . 13 𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1𝑜, (𝑝 𝑖))))
2322peano4nninf 11365 . . . . . . . . . . . 12 𝑆:ℕ1-1→ℕ
2423a1i 9 . . . . . . . . . . 11 (𝑧 ⊆ {∅} → 𝑆:ℕ1-1→ℕ)
25 disj 3319 . . . . . . . . . . . . 13 ((ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) ∩ ran 𝑆) = ∅ ↔ ∀𝑎 ∈ ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) ¬ 𝑎 ∈ ran 𝑆)
2622peano3nninf 11366 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ ℕ → (𝑆𝑏) ≠ (𝑘 ∈ ω ↦ ∅))
27 eqidd 2086 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → ∅ = ∅)
2827cbvmptv 3911 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ω ↦ ∅) = (𝑖 ∈ ω ↦ ∅)
2928neeq2i 2267 . . . . . . . . . . . . . . . . . . 19 ((𝑆𝑏) ≠ (𝑘 ∈ ω ↦ ∅) ↔ (𝑆𝑏) ≠ (𝑖 ∈ ω ↦ ∅))
3026, 29sylib 120 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℕ → (𝑆𝑏) ≠ (𝑖 ∈ ω ↦ ∅))
3130neneqd 2272 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ ℕ → ¬ (𝑆𝑏) = (𝑖 ∈ ω ↦ ∅))
3231nrex 2461 . . . . . . . . . . . . . . . 16 ¬ ∃𝑏 ∈ ℕ (𝑆𝑏) = (𝑖 ∈ ω ↦ ∅)
33 f1dm 5186 . . . . . . . . . . . . . . . . . 18 (𝑆:ℕ1-1→ℕ → dom 𝑆 = ℕ)
3423, 33ax-mp 7 . . . . . . . . . . . . . . . . 17 dom 𝑆 = ℕ
35 eqcom 2087 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ω ↦ ∅) = (𝑆𝑏) ↔ (𝑆𝑏) = (𝑖 ∈ ω ↦ ∅))
3634, 35rexeqbii 2387 . . . . . . . . . . . . . . . 16 (∃𝑏 ∈ dom 𝑆(𝑖 ∈ ω ↦ ∅) = (𝑆𝑏) ↔ ∃𝑏 ∈ ℕ (𝑆𝑏) = (𝑖 ∈ ω ↦ ∅))
3732, 36mtbir 629 . . . . . . . . . . . . . . 15 ¬ ∃𝑏 ∈ dom 𝑆(𝑖 ∈ ω ↦ ∅) = (𝑆𝑏)
3822funmpt2 5020 . . . . . . . . . . . . . . . 16 Fun 𝑆
39 elrnrexdm 5403 . . . . . . . . . . . . . . . 16 (Fun 𝑆 → ((𝑖 ∈ ω ↦ ∅) ∈ ran 𝑆 → ∃𝑏 ∈ dom 𝑆(𝑖 ∈ ω ↦ ∅) = (𝑆𝑏)))
4038, 39ax-mp 7 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ω ↦ ∅) ∈ ran 𝑆 → ∃𝑏 ∈ dom 𝑆(𝑖 ∈ ω ↦ ∅) = (𝑆𝑏))
4137, 40mto 621 . . . . . . . . . . . . . 14 ¬ (𝑖 ∈ ω ↦ ∅) ∈ ran 𝑆
42 rnxpss 4830 . . . . . . . . . . . . . . . . 17 ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) ⊆ {(𝑖 ∈ ω ↦ ∅)}
4342sseli 3010 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) → 𝑎 ∈ {(𝑖 ∈ ω ↦ ∅)})
44 elsni 3449 . . . . . . . . . . . . . . . 16 (𝑎 ∈ {(𝑖 ∈ ω ↦ ∅)} → 𝑎 = (𝑖 ∈ ω ↦ ∅))
4543, 44syl 14 . . . . . . . . . . . . . . 15 (𝑎 ∈ ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) → 𝑎 = (𝑖 ∈ ω ↦ ∅))
4645eleq1d 2153 . . . . . . . . . . . . . 14 (𝑎 ∈ ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) → (𝑎 ∈ ran 𝑆 ↔ (𝑖 ∈ ω ↦ ∅) ∈ ran 𝑆))
4741, 46mtbiri 633 . . . . . . . . . . . . 13 (𝑎 ∈ ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) → ¬ 𝑎 ∈ ran 𝑆)
4825, 47mprgbir 2429 . . . . . . . . . . . 12 (ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) ∩ ran 𝑆) = ∅
4948a1i 9 . . . . . . . . . . 11 (𝑧 ⊆ {∅} → (ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) ∩ ran 𝑆) = ∅)
5021, 24, 49casef1 6728 . . . . . . . . . 10 (𝑧 ⊆ {∅} → case((𝑧 × {(𝑖 ∈ ω ↦ ∅)}), 𝑆):(𝑧 ⊔ ℕ)–1-1→ℕ)
51 f1domg 6429 . . . . . . . . . 10 (ℕ ∈ V → (case((𝑧 × {(𝑖 ∈ ω ↦ ∅)}), 𝑆):(𝑧 ⊔ ℕ)–1-1→ℕ → (𝑧 ⊔ ℕ) ≼ ℕ))
522, 50, 51mpsyl 64 . . . . . . . . 9 (𝑧 ⊆ {∅} → (𝑧 ⊔ ℕ) ≼ ℕ)
5352adantl 271 . . . . . . . 8 ((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) → (𝑧 ⊔ ℕ) ≼ ℕ)
54 inrresf1 6701 . . . . . . . . 9 (inr ↾ ℕ):ℕ1-1→(𝑧 ⊔ ℕ)
55 vex 2618 . . . . . . . . . . 11 𝑧 ∈ V
56 djuex 6683 . . . . . . . . . . 11 ((𝑧 ∈ V ∧ ℕ ∈ V) → (𝑧 ⊔ ℕ) ∈ V)
5755, 2, 56mp2an 417 . . . . . . . . . 10 (𝑧 ⊔ ℕ) ∈ V
5857f1dom 6431 . . . . . . . . 9 ((inr ↾ ℕ):ℕ1-1→(𝑧 ⊔ ℕ) → ℕ ≼ (𝑧 ⊔ ℕ))
5954, 58ax-mp 7 . . . . . . . 8 ≼ (𝑧 ⊔ ℕ)
6053, 59jctir 306 . . . . . . 7 ((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) → ((𝑧 ⊔ ℕ) ≼ ℕ ∧ ℕ ≼ (𝑧 ⊔ ℕ)))
61 breq12 3827 . . . . . . . . . . 11 ((𝑥 = (𝑧 ⊔ ℕ) ∧ 𝑦 = ℕ) → (𝑥𝑦 ↔ (𝑧 ⊔ ℕ) ≼ ℕ))
62 breq12 3827 . . . . . . . . . . . 12 ((𝑦 = ℕ𝑥 = (𝑧 ⊔ ℕ)) → (𝑦𝑥 ↔ ℕ ≼ (𝑧 ⊔ ℕ)))
6362ancoms 264 . . . . . . . . . . 11 ((𝑥 = (𝑧 ⊔ ℕ) ∧ 𝑦 = ℕ) → (𝑦𝑥 ↔ ℕ ≼ (𝑧 ⊔ ℕ)))
6461, 63anbi12d 457 . . . . . . . . . 10 ((𝑥 = (𝑧 ⊔ ℕ) ∧ 𝑦 = ℕ) → ((𝑥𝑦𝑦𝑥) ↔ ((𝑧 ⊔ ℕ) ≼ ℕ ∧ ℕ ≼ (𝑧 ⊔ ℕ))))
65 breq12 3827 . . . . . . . . . 10 ((𝑥 = (𝑧 ⊔ ℕ) ∧ 𝑦 = ℕ) → (𝑥𝑦 ↔ (𝑧 ⊔ ℕ) ≈ ℕ))
6664, 65imbi12d 232 . . . . . . . . 9 ((𝑥 = (𝑧 ⊔ ℕ) ∧ 𝑦 = ℕ) → (((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ↔ (((𝑧 ⊔ ℕ) ≼ ℕ ∧ ℕ ≼ (𝑧 ⊔ ℕ)) → (𝑧 ⊔ ℕ) ≈ ℕ)))
6766spc2gv 2702 . . . . . . . 8 (((𝑧 ⊔ ℕ) ∈ V ∧ ℕ ∈ V) → (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → (((𝑧 ⊔ ℕ) ≼ ℕ ∧ ℕ ≼ (𝑧 ⊔ ℕ)) → (𝑧 ⊔ ℕ) ≈ ℕ)))
6857, 2, 67mp2an 417 . . . . . . 7 (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → (((𝑧 ⊔ ℕ) ≼ ℕ ∧ ℕ ≼ (𝑧 ⊔ ℕ)) → (𝑧 ⊔ ℕ) ≈ ℕ))
691, 60, 68sylc 61 . . . . . 6 ((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) → (𝑧 ⊔ ℕ) ≈ ℕ)
70 bren 6418 . . . . . 6 ((𝑧 ⊔ ℕ) ≈ ℕ ↔ ∃𝑓 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ)
7169, 70sylib 120 . . . . 5 ((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) → ∃𝑓 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ)
72 nninfomni 11380 . . . . . . . . 9 ∈ Omni
7372a1i 9 . . . . . . . 8 (((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ) → ℕ ∈ Omni)
74 f1ocnv 5231 . . . . . . . . . 10 (𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ𝑓:ℕ1-1-onto→(𝑧 ⊔ ℕ))
75 f1ofo 5225 . . . . . . . . . 10 (𝑓:ℕ1-1-onto→(𝑧 ⊔ ℕ) → 𝑓:ℕonto→(𝑧 ⊔ ℕ))
7674, 75syl 14 . . . . . . . . 9 (𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ𝑓:ℕonto→(𝑧 ⊔ ℕ))
7776adantl 271 . . . . . . . 8 (((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ) → 𝑓:ℕonto→(𝑧 ⊔ ℕ))
7873, 77fodjuomni 6751 . . . . . . 7 (((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ) → (∃𝑤 𝑤𝑧𝑧 = ∅))
79 sssnm 3583 . . . . . . . . . 10 (∃𝑤 𝑤𝑧 → (𝑧 ⊆ {∅} ↔ 𝑧 = {∅}))
8079biimpcd 157 . . . . . . . . 9 (𝑧 ⊆ {∅} → (∃𝑤 𝑤𝑧𝑧 = {∅}))
8180ad2antlr 473 . . . . . . . 8 (((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ) → (∃𝑤 𝑤𝑧𝑧 = {∅}))
8281orim1d 734 . . . . . . 7 (((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ) → ((∃𝑤 𝑤𝑧𝑧 = ∅) → (𝑧 = {∅} ∨ 𝑧 = ∅)))
8378, 82mpd 13 . . . . . 6 (((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ) → (𝑧 = {∅} ∨ 𝑧 = ∅))
8483orcomd 681 . . . . 5 (((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ) → (𝑧 = ∅ ∨ 𝑧 = {∅}))
8571, 84exlimddv 1823 . . . 4 ((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) → (𝑧 = ∅ ∨ 𝑧 = {∅}))
8685ex 113 . . 3 (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → (𝑧 ⊆ {∅} → (𝑧 = ∅ ∨ 𝑧 = {∅})))
8786alrimiv 1799 . 2 (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → ∀𝑧(𝑧 ⊆ {∅} → (𝑧 = ∅ ∨ 𝑧 = {∅})))
88 exmid01 4008 . 2 (EXMID ↔ ∀𝑧(𝑧 ⊆ {∅} → (𝑧 = ∅ ∨ 𝑧 = {∅})))
8987, 88sylibr 132 1 (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → EXMID)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 662  wal 1285   = wceq 1287  wex 1424  wcel 1436  wne 2251  wral 2355  wrex 2356  Vcvv 2615  cin 2987  wss 2988  c0 3275  ifcif 3379  {csn 3431   cuni 3638   class class class wbr 3822  cmpt 3876  EXMIDwem 4005  ωcom 4380   × cxp 4411  ccnv 4412  dom cdm 4413  ran crn 4414  cres 4415  Fun wfun 4977  wf 4979  1-1wf1 4980  ontowfo 4981  1-1-ontowf1o 4982  cfv 4983  1𝑜c1o 6130  cen 6409  cdom 6410  cdju 6677  inrcinr 6685  casecdjucase 6721  Omnicomni 6735  xnninf 6736
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3931  ax-sep 3934  ax-nul 3942  ax-pow 3986  ax-pr 4012  ax-un 4236  ax-setind 4328  ax-iinf 4378
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-if 3380  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-int 3674  df-iun 3717  df-br 3823  df-opab 3877  df-mpt 3878  df-tr 3914  df-exmid 4006  df-id 4096  df-iord 4169  df-on 4171  df-suc 4174  df-iom 4381  df-xp 4419  df-rel 4420  df-cnv 4421  df-co 4422  df-dm 4423  df-rn 4424  df-res 4425  df-ima 4426  df-iota 4948  df-fun 4985  df-fn 4986  df-f 4987  df-f1 4988  df-fo 4989  df-f1o 4990  df-fv 4991  df-ov 5618  df-oprab 5619  df-mpt2 5620  df-1st 5870  df-2nd 5871  df-1o 6137  df-2o 6138  df-map 6361  df-en 6412  df-dom 6413  df-dju 6678  df-inl 6686  df-inr 6687  df-case 6722  df-omni 6737  df-nninf 6738
This theorem is referenced by:  exmidsbthr  11382
  Copyright terms: Public domain W3C validator