Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  exmidsbthrlem GIF version

Theorem exmidsbthrlem 12909
Description: Lemma for exmidsbthr 12910. (Contributed by Jim Kingdon, 11-Aug-2022.)
Hypothesis
Ref Expression
exmidsbthrlem.s 𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))
Assertion
Ref Expression
exmidsbthrlem (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → EXMID)
Distinct variable groups:   𝑆,𝑖   𝑖,𝑝   𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑝)

Proof of Theorem exmidsbthrlem
Dummy variables 𝑎 𝑏 𝑘 𝑧 𝑓 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . . . . 7 ((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) → ∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦))
2 nninfex 12897 . . . . . . . . . 10 ∈ V
3 fconstmpt 4546 . . . . . . . . . . . . . . 15 (ω × {∅}) = (𝑖 ∈ ω ↦ ∅)
4 0nninf 12889 . . . . . . . . . . . . . . 15 (ω × {∅}) ∈ ℕ
53, 4eqeltrri 2188 . . . . . . . . . . . . . 14 (𝑖 ∈ ω ↦ ∅) ∈ ℕ
65fconst6 5280 . . . . . . . . . . . . 13 (𝑧 × {(𝑖 ∈ ω ↦ ∅)}):𝑧⟶ℕ
76a1i 9 . . . . . . . . . . . 12 (𝑧 ⊆ {∅} → (𝑧 × {(𝑖 ∈ ω ↦ ∅)}):𝑧⟶ℕ)
8 ssel 3057 . . . . . . . . . . . . . . . . . 18 (𝑧 ⊆ {∅} → (𝑢𝑧𝑢 ∈ {∅}))
9 elsni 3511 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ {∅} → 𝑢 = ∅)
108, 9syl6 33 . . . . . . . . . . . . . . . . 17 (𝑧 ⊆ {∅} → (𝑢𝑧𝑢 = ∅))
11 ssel 3057 . . . . . . . . . . . . . . . . . 18 (𝑧 ⊆ {∅} → (𝑣𝑧𝑣 ∈ {∅}))
12 elsni 3511 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ {∅} → 𝑣 = ∅)
1311, 12syl6 33 . . . . . . . . . . . . . . . . 17 (𝑧 ⊆ {∅} → (𝑣𝑧𝑣 = ∅))
1410, 13anim12d 331 . . . . . . . . . . . . . . . 16 (𝑧 ⊆ {∅} → ((𝑢𝑧𝑣𝑧) → (𝑢 = ∅ ∧ 𝑣 = ∅)))
15 eqtr3 2134 . . . . . . . . . . . . . . . 16 ((𝑢 = ∅ ∧ 𝑣 = ∅) → 𝑢 = 𝑣)
1614, 15syl6 33 . . . . . . . . . . . . . . 15 (𝑧 ⊆ {∅} → ((𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣))
1716imp 123 . . . . . . . . . . . . . 14 ((𝑧 ⊆ {∅} ∧ (𝑢𝑧𝑣𝑧)) → 𝑢 = 𝑣)
1817a1d 22 . . . . . . . . . . . . 13 ((𝑧 ⊆ {∅} ∧ (𝑢𝑧𝑣𝑧)) → (((𝑧 × {(𝑖 ∈ ω ↦ ∅)})‘𝑢) = ((𝑧 × {(𝑖 ∈ ω ↦ ∅)})‘𝑣) → 𝑢 = 𝑣))
1918ralrimivva 2488 . . . . . . . . . . . 12 (𝑧 ⊆ {∅} → ∀𝑢𝑧𝑣𝑧 (((𝑧 × {(𝑖 ∈ ω ↦ ∅)})‘𝑢) = ((𝑧 × {(𝑖 ∈ ω ↦ ∅)})‘𝑣) → 𝑢 = 𝑣))
20 dff13 5623 . . . . . . . . . . . 12 ((𝑧 × {(𝑖 ∈ ω ↦ ∅)}):𝑧1-1→ℕ ↔ ((𝑧 × {(𝑖 ∈ ω ↦ ∅)}):𝑧⟶ℕ ∧ ∀𝑢𝑧𝑣𝑧 (((𝑧 × {(𝑖 ∈ ω ↦ ∅)})‘𝑢) = ((𝑧 × {(𝑖 ∈ ω ↦ ∅)})‘𝑣) → 𝑢 = 𝑣)))
217, 19, 20sylanbrc 411 . . . . . . . . . . 11 (𝑧 ⊆ {∅} → (𝑧 × {(𝑖 ∈ ω ↦ ∅)}):𝑧1-1→ℕ)
22 exmidsbthrlem.s . . . . . . . . . . . . 13 𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))
2322peano4nninf 12892 . . . . . . . . . . . 12 𝑆:ℕ1-1→ℕ
2423a1i 9 . . . . . . . . . . 11 (𝑧 ⊆ {∅} → 𝑆:ℕ1-1→ℕ)
25 disj 3377 . . . . . . . . . . . . 13 ((ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) ∩ ran 𝑆) = ∅ ↔ ∀𝑎 ∈ ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) ¬ 𝑎 ∈ ran 𝑆)
2622peano3nninf 12893 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ ℕ → (𝑆𝑏) ≠ (𝑘 ∈ ω ↦ ∅))
27 eqidd 2116 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → ∅ = ∅)
2827cbvmptv 3984 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ω ↦ ∅) = (𝑖 ∈ ω ↦ ∅)
2928neeq2i 2298 . . . . . . . . . . . . . . . . . . 19 ((𝑆𝑏) ≠ (𝑘 ∈ ω ↦ ∅) ↔ (𝑆𝑏) ≠ (𝑖 ∈ ω ↦ ∅))
3026, 29sylib 121 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℕ → (𝑆𝑏) ≠ (𝑖 ∈ ω ↦ ∅))
3130neneqd 2303 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ ℕ → ¬ (𝑆𝑏) = (𝑖 ∈ ω ↦ ∅))
3231nrex 2498 . . . . . . . . . . . . . . . 16 ¬ ∃𝑏 ∈ ℕ (𝑆𝑏) = (𝑖 ∈ ω ↦ ∅)
33 f1dm 5291 . . . . . . . . . . . . . . . . . 18 (𝑆:ℕ1-1→ℕ → dom 𝑆 = ℕ)
3423, 33ax-mp 7 . . . . . . . . . . . . . . . . 17 dom 𝑆 = ℕ
35 eqcom 2117 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ω ↦ ∅) = (𝑆𝑏) ↔ (𝑆𝑏) = (𝑖 ∈ ω ↦ ∅))
3634, 35rexeqbii 2422 . . . . . . . . . . . . . . . 16 (∃𝑏 ∈ dom 𝑆(𝑖 ∈ ω ↦ ∅) = (𝑆𝑏) ↔ ∃𝑏 ∈ ℕ (𝑆𝑏) = (𝑖 ∈ ω ↦ ∅))
3732, 36mtbir 643 . . . . . . . . . . . . . . 15 ¬ ∃𝑏 ∈ dom 𝑆(𝑖 ∈ ω ↦ ∅) = (𝑆𝑏)
3822funmpt2 5120 . . . . . . . . . . . . . . . 16 Fun 𝑆
39 elrnrexdm 5513 . . . . . . . . . . . . . . . 16 (Fun 𝑆 → ((𝑖 ∈ ω ↦ ∅) ∈ ran 𝑆 → ∃𝑏 ∈ dom 𝑆(𝑖 ∈ ω ↦ ∅) = (𝑆𝑏)))
4038, 39ax-mp 7 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ω ↦ ∅) ∈ ran 𝑆 → ∃𝑏 ∈ dom 𝑆(𝑖 ∈ ω ↦ ∅) = (𝑆𝑏))
4137, 40mto 634 . . . . . . . . . . . . . 14 ¬ (𝑖 ∈ ω ↦ ∅) ∈ ran 𝑆
42 rnxpss 4928 . . . . . . . . . . . . . . . . 17 ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) ⊆ {(𝑖 ∈ ω ↦ ∅)}
4342sseli 3059 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) → 𝑎 ∈ {(𝑖 ∈ ω ↦ ∅)})
44 elsni 3511 . . . . . . . . . . . . . . . 16 (𝑎 ∈ {(𝑖 ∈ ω ↦ ∅)} → 𝑎 = (𝑖 ∈ ω ↦ ∅))
4543, 44syl 14 . . . . . . . . . . . . . . 15 (𝑎 ∈ ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) → 𝑎 = (𝑖 ∈ ω ↦ ∅))
4645eleq1d 2183 . . . . . . . . . . . . . 14 (𝑎 ∈ ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) → (𝑎 ∈ ran 𝑆 ↔ (𝑖 ∈ ω ↦ ∅) ∈ ran 𝑆))
4741, 46mtbiri 647 . . . . . . . . . . . . 13 (𝑎 ∈ ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) → ¬ 𝑎 ∈ ran 𝑆)
4825, 47mprgbir 2464 . . . . . . . . . . . 12 (ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) ∩ ran 𝑆) = ∅
4948a1i 9 . . . . . . . . . . 11 (𝑧 ⊆ {∅} → (ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) ∩ ran 𝑆) = ∅)
5021, 24, 49casef1 6927 . . . . . . . . . 10 (𝑧 ⊆ {∅} → case((𝑧 × {(𝑖 ∈ ω ↦ ∅)}), 𝑆):(𝑧 ⊔ ℕ)–1-1→ℕ)
51 f1domg 6606 . . . . . . . . . 10 (ℕ ∈ V → (case((𝑧 × {(𝑖 ∈ ω ↦ ∅)}), 𝑆):(𝑧 ⊔ ℕ)–1-1→ℕ → (𝑧 ⊔ ℕ) ≼ ℕ))
522, 50, 51mpsyl 65 . . . . . . . . 9 (𝑧 ⊆ {∅} → (𝑧 ⊔ ℕ) ≼ ℕ)
5352adantl 273 . . . . . . . 8 ((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) → (𝑧 ⊔ ℕ) ≼ ℕ)
54 inrresf1 6899 . . . . . . . . 9 (inr ↾ ℕ):ℕ1-1→(𝑧 ⊔ ℕ)
55 vex 2660 . . . . . . . . . . 11 𝑧 ∈ V
56 djuex 6880 . . . . . . . . . . 11 ((𝑧 ∈ V ∧ ℕ ∈ V) → (𝑧 ⊔ ℕ) ∈ V)
5755, 2, 56mp2an 420 . . . . . . . . . 10 (𝑧 ⊔ ℕ) ∈ V
5857f1dom 6608 . . . . . . . . 9 ((inr ↾ ℕ):ℕ1-1→(𝑧 ⊔ ℕ) → ℕ ≼ (𝑧 ⊔ ℕ))
5954, 58ax-mp 7 . . . . . . . 8 ≼ (𝑧 ⊔ ℕ)
6053, 59jctir 309 . . . . . . 7 ((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) → ((𝑧 ⊔ ℕ) ≼ ℕ ∧ ℕ ≼ (𝑧 ⊔ ℕ)))
61 breq12 3900 . . . . . . . . . . 11 ((𝑥 = (𝑧 ⊔ ℕ) ∧ 𝑦 = ℕ) → (𝑥𝑦 ↔ (𝑧 ⊔ ℕ) ≼ ℕ))
62 breq12 3900 . . . . . . . . . . . 12 ((𝑦 = ℕ𝑥 = (𝑧 ⊔ ℕ)) → (𝑦𝑥 ↔ ℕ ≼ (𝑧 ⊔ ℕ)))
6362ancoms 266 . . . . . . . . . . 11 ((𝑥 = (𝑧 ⊔ ℕ) ∧ 𝑦 = ℕ) → (𝑦𝑥 ↔ ℕ ≼ (𝑧 ⊔ ℕ)))
6461, 63anbi12d 462 . . . . . . . . . 10 ((𝑥 = (𝑧 ⊔ ℕ) ∧ 𝑦 = ℕ) → ((𝑥𝑦𝑦𝑥) ↔ ((𝑧 ⊔ ℕ) ≼ ℕ ∧ ℕ ≼ (𝑧 ⊔ ℕ))))
65 breq12 3900 . . . . . . . . . 10 ((𝑥 = (𝑧 ⊔ ℕ) ∧ 𝑦 = ℕ) → (𝑥𝑦 ↔ (𝑧 ⊔ ℕ) ≈ ℕ))
6664, 65imbi12d 233 . . . . . . . . 9 ((𝑥 = (𝑧 ⊔ ℕ) ∧ 𝑦 = ℕ) → (((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ↔ (((𝑧 ⊔ ℕ) ≼ ℕ ∧ ℕ ≼ (𝑧 ⊔ ℕ)) → (𝑧 ⊔ ℕ) ≈ ℕ)))
6766spc2gv 2747 . . . . . . . 8 (((𝑧 ⊔ ℕ) ∈ V ∧ ℕ ∈ V) → (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → (((𝑧 ⊔ ℕ) ≼ ℕ ∧ ℕ ≼ (𝑧 ⊔ ℕ)) → (𝑧 ⊔ ℕ) ≈ ℕ)))
6857, 2, 67mp2an 420 . . . . . . 7 (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → (((𝑧 ⊔ ℕ) ≼ ℕ ∧ ℕ ≼ (𝑧 ⊔ ℕ)) → (𝑧 ⊔ ℕ) ≈ ℕ))
691, 60, 68sylc 62 . . . . . 6 ((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) → (𝑧 ⊔ ℕ) ≈ ℕ)
70 bren 6595 . . . . . 6 ((𝑧 ⊔ ℕ) ≈ ℕ ↔ ∃𝑓 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ)
7169, 70sylib 121 . . . . 5 ((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) → ∃𝑓 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ)
72 nninfomni 12907 . . . . . . . . 9 ∈ Omni
7372a1i 9 . . . . . . . 8 (((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ) → ℕ ∈ Omni)
74 f1ocnv 5336 . . . . . . . . . 10 (𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ𝑓:ℕ1-1-onto→(𝑧 ⊔ ℕ))
75 f1ofo 5330 . . . . . . . . . 10 (𝑓:ℕ1-1-onto→(𝑧 ⊔ ℕ) → 𝑓:ℕonto→(𝑧 ⊔ ℕ))
7674, 75syl 14 . . . . . . . . 9 (𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ𝑓:ℕonto→(𝑧 ⊔ ℕ))
7776adantl 273 . . . . . . . 8 (((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ) → 𝑓:ℕonto→(𝑧 ⊔ ℕ))
7873, 77fodjuomni 6971 . . . . . . 7 (((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ) → (∃𝑤 𝑤𝑧𝑧 = ∅))
79 sssnm 3647 . . . . . . . . . 10 (∃𝑤 𝑤𝑧 → (𝑧 ⊆ {∅} ↔ 𝑧 = {∅}))
8079biimpcd 158 . . . . . . . . 9 (𝑧 ⊆ {∅} → (∃𝑤 𝑤𝑧𝑧 = {∅}))
8180ad2antlr 478 . . . . . . . 8 (((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ) → (∃𝑤 𝑤𝑧𝑧 = {∅}))
8281orim1d 759 . . . . . . 7 (((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ) → ((∃𝑤 𝑤𝑧𝑧 = ∅) → (𝑧 = {∅} ∨ 𝑧 = ∅)))
8378, 82mpd 13 . . . . . 6 (((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ) → (𝑧 = {∅} ∨ 𝑧 = ∅))
8483orcomd 701 . . . . 5 (((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ) → (𝑧 = ∅ ∨ 𝑧 = {∅}))
8571, 84exlimddv 1852 . . . 4 ((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) → (𝑧 = ∅ ∨ 𝑧 = {∅}))
8685ex 114 . . 3 (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → (𝑧 ⊆ {∅} → (𝑧 = ∅ ∨ 𝑧 = {∅})))
8786alrimiv 1828 . 2 (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → ∀𝑧(𝑧 ⊆ {∅} → (𝑧 = ∅ ∨ 𝑧 = {∅})))
88 exmid01 4081 . 2 (EXMID ↔ ∀𝑧(𝑧 ⊆ {∅} → (𝑧 = ∅ ∨ 𝑧 = {∅})))
8987, 88sylibr 133 1 (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → EXMID)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 680  wal 1312   = wceq 1314  wex 1451  wcel 1463  wne 2282  wral 2390  wrex 2391  Vcvv 2657  cin 3036  wss 3037  c0 3329  ifcif 3440  {csn 3493   cuni 3702   class class class wbr 3895  cmpt 3949  EXMIDwem 4078  ωcom 4464   × cxp 4497  ccnv 4498  dom cdm 4499  ran crn 4500  cres 4501  Fun wfun 5075  wf 5077  1-1wf1 5078  ontowfo 5079  1-1-ontowf1o 5080  cfv 5081  1oc1o 6260  cen 6586  cdom 6587  cdju 6874  inrcinr 6883  casecdjucase 6920  Omnicomni 6954  xnninf 6955
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-if 3441  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-exmid 4079  df-id 4175  df-iord 4248  df-on 4250  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-1o 6267  df-2o 6268  df-map 6498  df-en 6589  df-dom 6590  df-dju 6875  df-inl 6884  df-inr 6885  df-case 6921  df-omni 6956  df-nninf 6957
This theorem is referenced by:  exmidsbthr  12910
  Copyright terms: Public domain W3C validator