Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  exmidsbthrlem GIF version

Theorem exmidsbthrlem 16035
Description: Lemma for exmidsbthr 16036. (Contributed by Jim Kingdon, 11-Aug-2022.)
Hypothesis
Ref Expression
exmidsbthrlem.s 𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))
Assertion
Ref Expression
exmidsbthrlem (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → EXMID)
Distinct variable groups:   𝑆,𝑖   𝑖,𝑝   𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑝)

Proof of Theorem exmidsbthrlem
Dummy variables 𝑎 𝑏 𝑘 𝑧 𝑓 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . . 7 ((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) → ∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦))
2 nninfex 7230 . . . . . . . . . 10 ∈ V
3 fconstmpt 4726 . . . . . . . . . . . . . . 15 (ω × {∅}) = (𝑖 ∈ ω ↦ ∅)
4 0nninf 16015 . . . . . . . . . . . . . . 15 (ω × {∅}) ∈ ℕ
53, 4eqeltrri 2280 . . . . . . . . . . . . . 14 (𝑖 ∈ ω ↦ ∅) ∈ ℕ
65fconst6 5482 . . . . . . . . . . . . 13 (𝑧 × {(𝑖 ∈ ω ↦ ∅)}):𝑧⟶ℕ
76a1i 9 . . . . . . . . . . . 12 (𝑧 ⊆ {∅} → (𝑧 × {(𝑖 ∈ ω ↦ ∅)}):𝑧⟶ℕ)
8 ssel 3188 . . . . . . . . . . . . . . . . . 18 (𝑧 ⊆ {∅} → (𝑢𝑧𝑢 ∈ {∅}))
9 elsni 3652 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ {∅} → 𝑢 = ∅)
108, 9syl6 33 . . . . . . . . . . . . . . . . 17 (𝑧 ⊆ {∅} → (𝑢𝑧𝑢 = ∅))
11 ssel 3188 . . . . . . . . . . . . . . . . . 18 (𝑧 ⊆ {∅} → (𝑣𝑧𝑣 ∈ {∅}))
12 elsni 3652 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ {∅} → 𝑣 = ∅)
1311, 12syl6 33 . . . . . . . . . . . . . . . . 17 (𝑧 ⊆ {∅} → (𝑣𝑧𝑣 = ∅))
1410, 13anim12d 335 . . . . . . . . . . . . . . . 16 (𝑧 ⊆ {∅} → ((𝑢𝑧𝑣𝑧) → (𝑢 = ∅ ∧ 𝑣 = ∅)))
15 eqtr3 2226 . . . . . . . . . . . . . . . 16 ((𝑢 = ∅ ∧ 𝑣 = ∅) → 𝑢 = 𝑣)
1614, 15syl6 33 . . . . . . . . . . . . . . 15 (𝑧 ⊆ {∅} → ((𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣))
1716imp 124 . . . . . . . . . . . . . 14 ((𝑧 ⊆ {∅} ∧ (𝑢𝑧𝑣𝑧)) → 𝑢 = 𝑣)
1817a1d 22 . . . . . . . . . . . . 13 ((𝑧 ⊆ {∅} ∧ (𝑢𝑧𝑣𝑧)) → (((𝑧 × {(𝑖 ∈ ω ↦ ∅)})‘𝑢) = ((𝑧 × {(𝑖 ∈ ω ↦ ∅)})‘𝑣) → 𝑢 = 𝑣))
1918ralrimivva 2589 . . . . . . . . . . . 12 (𝑧 ⊆ {∅} → ∀𝑢𝑧𝑣𝑧 (((𝑧 × {(𝑖 ∈ ω ↦ ∅)})‘𝑢) = ((𝑧 × {(𝑖 ∈ ω ↦ ∅)})‘𝑣) → 𝑢 = 𝑣))
20 dff13 5844 . . . . . . . . . . . 12 ((𝑧 × {(𝑖 ∈ ω ↦ ∅)}):𝑧1-1→ℕ ↔ ((𝑧 × {(𝑖 ∈ ω ↦ ∅)}):𝑧⟶ℕ ∧ ∀𝑢𝑧𝑣𝑧 (((𝑧 × {(𝑖 ∈ ω ↦ ∅)})‘𝑢) = ((𝑧 × {(𝑖 ∈ ω ↦ ∅)})‘𝑣) → 𝑢 = 𝑣)))
217, 19, 20sylanbrc 417 . . . . . . . . . . 11 (𝑧 ⊆ {∅} → (𝑧 × {(𝑖 ∈ ω ↦ ∅)}):𝑧1-1→ℕ)
22 exmidsbthrlem.s . . . . . . . . . . . . 13 𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))
2322peano4nninf 16017 . . . . . . . . . . . 12 𝑆:ℕ1-1→ℕ
2423a1i 9 . . . . . . . . . . 11 (𝑧 ⊆ {∅} → 𝑆:ℕ1-1→ℕ)
25 disj 3510 . . . . . . . . . . . . 13 ((ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) ∩ ran 𝑆) = ∅ ↔ ∀𝑎 ∈ ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) ¬ 𝑎 ∈ ran 𝑆)
2622peano3nninf 16018 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ ℕ → (𝑆𝑏) ≠ (𝑘 ∈ ω ↦ ∅))
27 eqidd 2207 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → ∅ = ∅)
2827cbvmptv 4144 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ω ↦ ∅) = (𝑖 ∈ ω ↦ ∅)
2928neeq2i 2393 . . . . . . . . . . . . . . . . . . 19 ((𝑆𝑏) ≠ (𝑘 ∈ ω ↦ ∅) ↔ (𝑆𝑏) ≠ (𝑖 ∈ ω ↦ ∅))
3026, 29sylib 122 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℕ → (𝑆𝑏) ≠ (𝑖 ∈ ω ↦ ∅))
3130neneqd 2398 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ ℕ → ¬ (𝑆𝑏) = (𝑖 ∈ ω ↦ ∅))
3231nrex 2599 . . . . . . . . . . . . . . . 16 ¬ ∃𝑏 ∈ ℕ (𝑆𝑏) = (𝑖 ∈ ω ↦ ∅)
33 f1dm 5493 . . . . . . . . . . . . . . . . . 18 (𝑆:ℕ1-1→ℕ → dom 𝑆 = ℕ)
3423, 33ax-mp 5 . . . . . . . . . . . . . . . . 17 dom 𝑆 = ℕ
35 eqcom 2208 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ω ↦ ∅) = (𝑆𝑏) ↔ (𝑆𝑏) = (𝑖 ∈ ω ↦ ∅))
3634, 35rexeqbii 2520 . . . . . . . . . . . . . . . 16 (∃𝑏 ∈ dom 𝑆(𝑖 ∈ ω ↦ ∅) = (𝑆𝑏) ↔ ∃𝑏 ∈ ℕ (𝑆𝑏) = (𝑖 ∈ ω ↦ ∅))
3732, 36mtbir 673 . . . . . . . . . . . . . . 15 ¬ ∃𝑏 ∈ dom 𝑆(𝑖 ∈ ω ↦ ∅) = (𝑆𝑏)
3822funmpt2 5315 . . . . . . . . . . . . . . . 16 Fun 𝑆
39 elrnrexdm 5726 . . . . . . . . . . . . . . . 16 (Fun 𝑆 → ((𝑖 ∈ ω ↦ ∅) ∈ ran 𝑆 → ∃𝑏 ∈ dom 𝑆(𝑖 ∈ ω ↦ ∅) = (𝑆𝑏)))
4038, 39ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ω ↦ ∅) ∈ ran 𝑆 → ∃𝑏 ∈ dom 𝑆(𝑖 ∈ ω ↦ ∅) = (𝑆𝑏))
4137, 40mto 664 . . . . . . . . . . . . . 14 ¬ (𝑖 ∈ ω ↦ ∅) ∈ ran 𝑆
42 rnxpss 5119 . . . . . . . . . . . . . . . . 17 ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) ⊆ {(𝑖 ∈ ω ↦ ∅)}
4342sseli 3190 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) → 𝑎 ∈ {(𝑖 ∈ ω ↦ ∅)})
44 elsni 3652 . . . . . . . . . . . . . . . 16 (𝑎 ∈ {(𝑖 ∈ ω ↦ ∅)} → 𝑎 = (𝑖 ∈ ω ↦ ∅))
4543, 44syl 14 . . . . . . . . . . . . . . 15 (𝑎 ∈ ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) → 𝑎 = (𝑖 ∈ ω ↦ ∅))
4645eleq1d 2275 . . . . . . . . . . . . . 14 (𝑎 ∈ ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) → (𝑎 ∈ ran 𝑆 ↔ (𝑖 ∈ ω ↦ ∅) ∈ ran 𝑆))
4741, 46mtbiri 677 . . . . . . . . . . . . 13 (𝑎 ∈ ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) → ¬ 𝑎 ∈ ran 𝑆)
4825, 47mprgbir 2565 . . . . . . . . . . . 12 (ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) ∩ ran 𝑆) = ∅
4948a1i 9 . . . . . . . . . . 11 (𝑧 ⊆ {∅} → (ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) ∩ ran 𝑆) = ∅)
5021, 24, 49casef1 7199 . . . . . . . . . 10 (𝑧 ⊆ {∅} → case((𝑧 × {(𝑖 ∈ ω ↦ ∅)}), 𝑆):(𝑧 ⊔ ℕ)–1-1→ℕ)
51 f1domg 6856 . . . . . . . . . 10 (ℕ ∈ V → (case((𝑧 × {(𝑖 ∈ ω ↦ ∅)}), 𝑆):(𝑧 ⊔ ℕ)–1-1→ℕ → (𝑧 ⊔ ℕ) ≼ ℕ))
522, 50, 51mpsyl 65 . . . . . . . . 9 (𝑧 ⊆ {∅} → (𝑧 ⊔ ℕ) ≼ ℕ)
5352adantl 277 . . . . . . . 8 ((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) → (𝑧 ⊔ ℕ) ≼ ℕ)
54 inrresf1 7171 . . . . . . . . 9 (inr ↾ ℕ):ℕ1-1→(𝑧 ⊔ ℕ)
55 vex 2776 . . . . . . . . . . 11 𝑧 ∈ V
56 djuex 7152 . . . . . . . . . . 11 ((𝑧 ∈ V ∧ ℕ ∈ V) → (𝑧 ⊔ ℕ) ∈ V)
5755, 2, 56mp2an 426 . . . . . . . . . 10 (𝑧 ⊔ ℕ) ∈ V
5857f1dom 6858 . . . . . . . . 9 ((inr ↾ ℕ):ℕ1-1→(𝑧 ⊔ ℕ) → ℕ ≼ (𝑧 ⊔ ℕ))
5954, 58ax-mp 5 . . . . . . . 8 ≼ (𝑧 ⊔ ℕ)
6053, 59jctir 313 . . . . . . 7 ((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) → ((𝑧 ⊔ ℕ) ≼ ℕ ∧ ℕ ≼ (𝑧 ⊔ ℕ)))
61 breq12 4052 . . . . . . . . . . 11 ((𝑥 = (𝑧 ⊔ ℕ) ∧ 𝑦 = ℕ) → (𝑥𝑦 ↔ (𝑧 ⊔ ℕ) ≼ ℕ))
62 breq12 4052 . . . . . . . . . . . 12 ((𝑦 = ℕ𝑥 = (𝑧 ⊔ ℕ)) → (𝑦𝑥 ↔ ℕ ≼ (𝑧 ⊔ ℕ)))
6362ancoms 268 . . . . . . . . . . 11 ((𝑥 = (𝑧 ⊔ ℕ) ∧ 𝑦 = ℕ) → (𝑦𝑥 ↔ ℕ ≼ (𝑧 ⊔ ℕ)))
6461, 63anbi12d 473 . . . . . . . . . 10 ((𝑥 = (𝑧 ⊔ ℕ) ∧ 𝑦 = ℕ) → ((𝑥𝑦𝑦𝑥) ↔ ((𝑧 ⊔ ℕ) ≼ ℕ ∧ ℕ ≼ (𝑧 ⊔ ℕ))))
65 breq12 4052 . . . . . . . . . 10 ((𝑥 = (𝑧 ⊔ ℕ) ∧ 𝑦 = ℕ) → (𝑥𝑦 ↔ (𝑧 ⊔ ℕ) ≈ ℕ))
6664, 65imbi12d 234 . . . . . . . . 9 ((𝑥 = (𝑧 ⊔ ℕ) ∧ 𝑦 = ℕ) → (((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ↔ (((𝑧 ⊔ ℕ) ≼ ℕ ∧ ℕ ≼ (𝑧 ⊔ ℕ)) → (𝑧 ⊔ ℕ) ≈ ℕ)))
6766spc2gv 2865 . . . . . . . 8 (((𝑧 ⊔ ℕ) ∈ V ∧ ℕ ∈ V) → (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → (((𝑧 ⊔ ℕ) ≼ ℕ ∧ ℕ ≼ (𝑧 ⊔ ℕ)) → (𝑧 ⊔ ℕ) ≈ ℕ)))
6857, 2, 67mp2an 426 . . . . . . 7 (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → (((𝑧 ⊔ ℕ) ≼ ℕ ∧ ℕ ≼ (𝑧 ⊔ ℕ)) → (𝑧 ⊔ ℕ) ≈ ℕ))
691, 60, 68sylc 62 . . . . . 6 ((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) → (𝑧 ⊔ ℕ) ≈ ℕ)
70 bren 6842 . . . . . 6 ((𝑧 ⊔ ℕ) ≈ ℕ ↔ ∃𝑓 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ)
7169, 70sylib 122 . . . . 5 ((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) → ∃𝑓 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ)
72 nninfomni 16030 . . . . . . . . 9 ∈ Omni
7372a1i 9 . . . . . . . 8 (((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ) → ℕ ∈ Omni)
74 f1ocnv 5542 . . . . . . . . . 10 (𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ𝑓:ℕ1-1-onto→(𝑧 ⊔ ℕ))
75 f1ofo 5536 . . . . . . . . . 10 (𝑓:ℕ1-1-onto→(𝑧 ⊔ ℕ) → 𝑓:ℕonto→(𝑧 ⊔ ℕ))
7674, 75syl 14 . . . . . . . . 9 (𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ𝑓:ℕonto→(𝑧 ⊔ ℕ))
7776adantl 277 . . . . . . . 8 (((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ) → 𝑓:ℕonto→(𝑧 ⊔ ℕ))
7873, 77fodjuomni 7258 . . . . . . 7 (((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ) → (∃𝑤 𝑤𝑧𝑧 = ∅))
79 sssnm 3797 . . . . . . . . . 10 (∃𝑤 𝑤𝑧 → (𝑧 ⊆ {∅} ↔ 𝑧 = {∅}))
8079biimpcd 159 . . . . . . . . 9 (𝑧 ⊆ {∅} → (∃𝑤 𝑤𝑧𝑧 = {∅}))
8180ad2antlr 489 . . . . . . . 8 (((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ) → (∃𝑤 𝑤𝑧𝑧 = {∅}))
8281orim1d 789 . . . . . . 7 (((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ) → ((∃𝑤 𝑤𝑧𝑧 = ∅) → (𝑧 = {∅} ∨ 𝑧 = ∅)))
8378, 82mpd 13 . . . . . 6 (((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ) → (𝑧 = {∅} ∨ 𝑧 = ∅))
8483orcomd 731 . . . . 5 (((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ) → (𝑧 = ∅ ∨ 𝑧 = {∅}))
8571, 84exlimddv 1923 . . . 4 ((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) → (𝑧 = ∅ ∨ 𝑧 = {∅}))
8685ex 115 . . 3 (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → (𝑧 ⊆ {∅} → (𝑧 = ∅ ∨ 𝑧 = {∅})))
8786alrimiv 1898 . 2 (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → ∀𝑧(𝑧 ⊆ {∅} → (𝑧 = ∅ ∨ 𝑧 = {∅})))
88 exmid01 4246 . 2 (EXMID ↔ ∀𝑧(𝑧 ⊆ {∅} → (𝑧 = ∅ ∨ 𝑧 = {∅})))
8987, 88sylibr 134 1 (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → EXMID)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  wal 1371   = wceq 1373  wex 1516  wcel 2177  wne 2377  wral 2485  wrex 2486  Vcvv 2773  cin 3166  wss 3167  c0 3461  ifcif 3572  {csn 3634   cuni 3852   class class class wbr 4047  cmpt 4109  EXMIDwem 4242  ωcom 4642   × cxp 4677  ccnv 4678  dom cdm 4679  ran crn 4680  cres 4681  Fun wfun 5270  wf 5272  1-1wf1 5273  ontowfo 5274  1-1-ontowf1o 5275  cfv 5276  1oc1o 6502  cen 6832  cdom 6833  cdju 7146  inrcinr 7155  casecdjucase 7192  xnninf 7228  Omnicomni 7243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-exmid 4243  df-id 4344  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-1o 6509  df-2o 6510  df-map 6744  df-en 6835  df-dom 6836  df-dju 7147  df-inl 7156  df-inr 7157  df-case 7193  df-nninf 7229  df-omni 7244
This theorem is referenced by:  exmidsbthr  16036
  Copyright terms: Public domain W3C validator