Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  exmidsbthrlem GIF version

Theorem exmidsbthrlem 14054
Description: Lemma for exmidsbthr 14055. (Contributed by Jim Kingdon, 11-Aug-2022.)
Hypothesis
Ref Expression
exmidsbthrlem.s 𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))
Assertion
Ref Expression
exmidsbthrlem (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → EXMID)
Distinct variable groups:   𝑆,𝑖   𝑖,𝑝   𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑝)

Proof of Theorem exmidsbthrlem
Dummy variables 𝑎 𝑏 𝑘 𝑧 𝑓 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . . . . 7 ((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) → ∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦))
2 nninfex 7098 . . . . . . . . . 10 ∈ V
3 fconstmpt 4658 . . . . . . . . . . . . . . 15 (ω × {∅}) = (𝑖 ∈ ω ↦ ∅)
4 0nninf 14037 . . . . . . . . . . . . . . 15 (ω × {∅}) ∈ ℕ
53, 4eqeltrri 2244 . . . . . . . . . . . . . 14 (𝑖 ∈ ω ↦ ∅) ∈ ℕ
65fconst6 5397 . . . . . . . . . . . . 13 (𝑧 × {(𝑖 ∈ ω ↦ ∅)}):𝑧⟶ℕ
76a1i 9 . . . . . . . . . . . 12 (𝑧 ⊆ {∅} → (𝑧 × {(𝑖 ∈ ω ↦ ∅)}):𝑧⟶ℕ)
8 ssel 3141 . . . . . . . . . . . . . . . . . 18 (𝑧 ⊆ {∅} → (𝑢𝑧𝑢 ∈ {∅}))
9 elsni 3601 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ {∅} → 𝑢 = ∅)
108, 9syl6 33 . . . . . . . . . . . . . . . . 17 (𝑧 ⊆ {∅} → (𝑢𝑧𝑢 = ∅))
11 ssel 3141 . . . . . . . . . . . . . . . . . 18 (𝑧 ⊆ {∅} → (𝑣𝑧𝑣 ∈ {∅}))
12 elsni 3601 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ {∅} → 𝑣 = ∅)
1311, 12syl6 33 . . . . . . . . . . . . . . . . 17 (𝑧 ⊆ {∅} → (𝑣𝑧𝑣 = ∅))
1410, 13anim12d 333 . . . . . . . . . . . . . . . 16 (𝑧 ⊆ {∅} → ((𝑢𝑧𝑣𝑧) → (𝑢 = ∅ ∧ 𝑣 = ∅)))
15 eqtr3 2190 . . . . . . . . . . . . . . . 16 ((𝑢 = ∅ ∧ 𝑣 = ∅) → 𝑢 = 𝑣)
1614, 15syl6 33 . . . . . . . . . . . . . . 15 (𝑧 ⊆ {∅} → ((𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣))
1716imp 123 . . . . . . . . . . . . . 14 ((𝑧 ⊆ {∅} ∧ (𝑢𝑧𝑣𝑧)) → 𝑢 = 𝑣)
1817a1d 22 . . . . . . . . . . . . 13 ((𝑧 ⊆ {∅} ∧ (𝑢𝑧𝑣𝑧)) → (((𝑧 × {(𝑖 ∈ ω ↦ ∅)})‘𝑢) = ((𝑧 × {(𝑖 ∈ ω ↦ ∅)})‘𝑣) → 𝑢 = 𝑣))
1918ralrimivva 2552 . . . . . . . . . . . 12 (𝑧 ⊆ {∅} → ∀𝑢𝑧𝑣𝑧 (((𝑧 × {(𝑖 ∈ ω ↦ ∅)})‘𝑢) = ((𝑧 × {(𝑖 ∈ ω ↦ ∅)})‘𝑣) → 𝑢 = 𝑣))
20 dff13 5747 . . . . . . . . . . . 12 ((𝑧 × {(𝑖 ∈ ω ↦ ∅)}):𝑧1-1→ℕ ↔ ((𝑧 × {(𝑖 ∈ ω ↦ ∅)}):𝑧⟶ℕ ∧ ∀𝑢𝑧𝑣𝑧 (((𝑧 × {(𝑖 ∈ ω ↦ ∅)})‘𝑢) = ((𝑧 × {(𝑖 ∈ ω ↦ ∅)})‘𝑣) → 𝑢 = 𝑣)))
217, 19, 20sylanbrc 415 . . . . . . . . . . 11 (𝑧 ⊆ {∅} → (𝑧 × {(𝑖 ∈ ω ↦ ∅)}):𝑧1-1→ℕ)
22 exmidsbthrlem.s . . . . . . . . . . . . 13 𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))
2322peano4nninf 14039 . . . . . . . . . . . 12 𝑆:ℕ1-1→ℕ
2423a1i 9 . . . . . . . . . . 11 (𝑧 ⊆ {∅} → 𝑆:ℕ1-1→ℕ)
25 disj 3463 . . . . . . . . . . . . 13 ((ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) ∩ ran 𝑆) = ∅ ↔ ∀𝑎 ∈ ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) ¬ 𝑎 ∈ ran 𝑆)
2622peano3nninf 14040 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ ℕ → (𝑆𝑏) ≠ (𝑘 ∈ ω ↦ ∅))
27 eqidd 2171 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → ∅ = ∅)
2827cbvmptv 4085 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ω ↦ ∅) = (𝑖 ∈ ω ↦ ∅)
2928neeq2i 2356 . . . . . . . . . . . . . . . . . . 19 ((𝑆𝑏) ≠ (𝑘 ∈ ω ↦ ∅) ↔ (𝑆𝑏) ≠ (𝑖 ∈ ω ↦ ∅))
3026, 29sylib 121 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℕ → (𝑆𝑏) ≠ (𝑖 ∈ ω ↦ ∅))
3130neneqd 2361 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ ℕ → ¬ (𝑆𝑏) = (𝑖 ∈ ω ↦ ∅))
3231nrex 2562 . . . . . . . . . . . . . . . 16 ¬ ∃𝑏 ∈ ℕ (𝑆𝑏) = (𝑖 ∈ ω ↦ ∅)
33 f1dm 5408 . . . . . . . . . . . . . . . . . 18 (𝑆:ℕ1-1→ℕ → dom 𝑆 = ℕ)
3423, 33ax-mp 5 . . . . . . . . . . . . . . . . 17 dom 𝑆 = ℕ
35 eqcom 2172 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ω ↦ ∅) = (𝑆𝑏) ↔ (𝑆𝑏) = (𝑖 ∈ ω ↦ ∅))
3634, 35rexeqbii 2483 . . . . . . . . . . . . . . . 16 (∃𝑏 ∈ dom 𝑆(𝑖 ∈ ω ↦ ∅) = (𝑆𝑏) ↔ ∃𝑏 ∈ ℕ (𝑆𝑏) = (𝑖 ∈ ω ↦ ∅))
3732, 36mtbir 666 . . . . . . . . . . . . . . 15 ¬ ∃𝑏 ∈ dom 𝑆(𝑖 ∈ ω ↦ ∅) = (𝑆𝑏)
3822funmpt2 5237 . . . . . . . . . . . . . . . 16 Fun 𝑆
39 elrnrexdm 5635 . . . . . . . . . . . . . . . 16 (Fun 𝑆 → ((𝑖 ∈ ω ↦ ∅) ∈ ran 𝑆 → ∃𝑏 ∈ dom 𝑆(𝑖 ∈ ω ↦ ∅) = (𝑆𝑏)))
4038, 39ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ω ↦ ∅) ∈ ran 𝑆 → ∃𝑏 ∈ dom 𝑆(𝑖 ∈ ω ↦ ∅) = (𝑆𝑏))
4137, 40mto 657 . . . . . . . . . . . . . 14 ¬ (𝑖 ∈ ω ↦ ∅) ∈ ran 𝑆
42 rnxpss 5042 . . . . . . . . . . . . . . . . 17 ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) ⊆ {(𝑖 ∈ ω ↦ ∅)}
4342sseli 3143 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) → 𝑎 ∈ {(𝑖 ∈ ω ↦ ∅)})
44 elsni 3601 . . . . . . . . . . . . . . . 16 (𝑎 ∈ {(𝑖 ∈ ω ↦ ∅)} → 𝑎 = (𝑖 ∈ ω ↦ ∅))
4543, 44syl 14 . . . . . . . . . . . . . . 15 (𝑎 ∈ ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) → 𝑎 = (𝑖 ∈ ω ↦ ∅))
4645eleq1d 2239 . . . . . . . . . . . . . 14 (𝑎 ∈ ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) → (𝑎 ∈ ran 𝑆 ↔ (𝑖 ∈ ω ↦ ∅) ∈ ran 𝑆))
4741, 46mtbiri 670 . . . . . . . . . . . . 13 (𝑎 ∈ ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) → ¬ 𝑎 ∈ ran 𝑆)
4825, 47mprgbir 2528 . . . . . . . . . . . 12 (ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) ∩ ran 𝑆) = ∅
4948a1i 9 . . . . . . . . . . 11 (𝑧 ⊆ {∅} → (ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) ∩ ran 𝑆) = ∅)
5021, 24, 49casef1 7067 . . . . . . . . . 10 (𝑧 ⊆ {∅} → case((𝑧 × {(𝑖 ∈ ω ↦ ∅)}), 𝑆):(𝑧 ⊔ ℕ)–1-1→ℕ)
51 f1domg 6736 . . . . . . . . . 10 (ℕ ∈ V → (case((𝑧 × {(𝑖 ∈ ω ↦ ∅)}), 𝑆):(𝑧 ⊔ ℕ)–1-1→ℕ → (𝑧 ⊔ ℕ) ≼ ℕ))
522, 50, 51mpsyl 65 . . . . . . . . 9 (𝑧 ⊆ {∅} → (𝑧 ⊔ ℕ) ≼ ℕ)
5352adantl 275 . . . . . . . 8 ((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) → (𝑧 ⊔ ℕ) ≼ ℕ)
54 inrresf1 7039 . . . . . . . . 9 (inr ↾ ℕ):ℕ1-1→(𝑧 ⊔ ℕ)
55 vex 2733 . . . . . . . . . . 11 𝑧 ∈ V
56 djuex 7020 . . . . . . . . . . 11 ((𝑧 ∈ V ∧ ℕ ∈ V) → (𝑧 ⊔ ℕ) ∈ V)
5755, 2, 56mp2an 424 . . . . . . . . . 10 (𝑧 ⊔ ℕ) ∈ V
5857f1dom 6738 . . . . . . . . 9 ((inr ↾ ℕ):ℕ1-1→(𝑧 ⊔ ℕ) → ℕ ≼ (𝑧 ⊔ ℕ))
5954, 58ax-mp 5 . . . . . . . 8 ≼ (𝑧 ⊔ ℕ)
6053, 59jctir 311 . . . . . . 7 ((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) → ((𝑧 ⊔ ℕ) ≼ ℕ ∧ ℕ ≼ (𝑧 ⊔ ℕ)))
61 breq12 3994 . . . . . . . . . . 11 ((𝑥 = (𝑧 ⊔ ℕ) ∧ 𝑦 = ℕ) → (𝑥𝑦 ↔ (𝑧 ⊔ ℕ) ≼ ℕ))
62 breq12 3994 . . . . . . . . . . . 12 ((𝑦 = ℕ𝑥 = (𝑧 ⊔ ℕ)) → (𝑦𝑥 ↔ ℕ ≼ (𝑧 ⊔ ℕ)))
6362ancoms 266 . . . . . . . . . . 11 ((𝑥 = (𝑧 ⊔ ℕ) ∧ 𝑦 = ℕ) → (𝑦𝑥 ↔ ℕ ≼ (𝑧 ⊔ ℕ)))
6461, 63anbi12d 470 . . . . . . . . . 10 ((𝑥 = (𝑧 ⊔ ℕ) ∧ 𝑦 = ℕ) → ((𝑥𝑦𝑦𝑥) ↔ ((𝑧 ⊔ ℕ) ≼ ℕ ∧ ℕ ≼ (𝑧 ⊔ ℕ))))
65 breq12 3994 . . . . . . . . . 10 ((𝑥 = (𝑧 ⊔ ℕ) ∧ 𝑦 = ℕ) → (𝑥𝑦 ↔ (𝑧 ⊔ ℕ) ≈ ℕ))
6664, 65imbi12d 233 . . . . . . . . 9 ((𝑥 = (𝑧 ⊔ ℕ) ∧ 𝑦 = ℕ) → (((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ↔ (((𝑧 ⊔ ℕ) ≼ ℕ ∧ ℕ ≼ (𝑧 ⊔ ℕ)) → (𝑧 ⊔ ℕ) ≈ ℕ)))
6766spc2gv 2821 . . . . . . . 8 (((𝑧 ⊔ ℕ) ∈ V ∧ ℕ ∈ V) → (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → (((𝑧 ⊔ ℕ) ≼ ℕ ∧ ℕ ≼ (𝑧 ⊔ ℕ)) → (𝑧 ⊔ ℕ) ≈ ℕ)))
6857, 2, 67mp2an 424 . . . . . . 7 (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → (((𝑧 ⊔ ℕ) ≼ ℕ ∧ ℕ ≼ (𝑧 ⊔ ℕ)) → (𝑧 ⊔ ℕ) ≈ ℕ))
691, 60, 68sylc 62 . . . . . 6 ((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) → (𝑧 ⊔ ℕ) ≈ ℕ)
70 bren 6725 . . . . . 6 ((𝑧 ⊔ ℕ) ≈ ℕ ↔ ∃𝑓 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ)
7169, 70sylib 121 . . . . 5 ((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) → ∃𝑓 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ)
72 nninfomni 14052 . . . . . . . . 9 ∈ Omni
7372a1i 9 . . . . . . . 8 (((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ) → ℕ ∈ Omni)
74 f1ocnv 5455 . . . . . . . . . 10 (𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ𝑓:ℕ1-1-onto→(𝑧 ⊔ ℕ))
75 f1ofo 5449 . . . . . . . . . 10 (𝑓:ℕ1-1-onto→(𝑧 ⊔ ℕ) → 𝑓:ℕonto→(𝑧 ⊔ ℕ))
7674, 75syl 14 . . . . . . . . 9 (𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ𝑓:ℕonto→(𝑧 ⊔ ℕ))
7776adantl 275 . . . . . . . 8 (((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ) → 𝑓:ℕonto→(𝑧 ⊔ ℕ))
7873, 77fodjuomni 7125 . . . . . . 7 (((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ) → (∃𝑤 𝑤𝑧𝑧 = ∅))
79 sssnm 3741 . . . . . . . . . 10 (∃𝑤 𝑤𝑧 → (𝑧 ⊆ {∅} ↔ 𝑧 = {∅}))
8079biimpcd 158 . . . . . . . . 9 (𝑧 ⊆ {∅} → (∃𝑤 𝑤𝑧𝑧 = {∅}))
8180ad2antlr 486 . . . . . . . 8 (((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ) → (∃𝑤 𝑤𝑧𝑧 = {∅}))
8281orim1d 782 . . . . . . 7 (((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ) → ((∃𝑤 𝑤𝑧𝑧 = ∅) → (𝑧 = {∅} ∨ 𝑧 = ∅)))
8378, 82mpd 13 . . . . . 6 (((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ) → (𝑧 = {∅} ∨ 𝑧 = ∅))
8483orcomd 724 . . . . 5 (((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ) → (𝑧 = ∅ ∨ 𝑧 = {∅}))
8571, 84exlimddv 1891 . . . 4 ((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) → (𝑧 = ∅ ∨ 𝑧 = {∅}))
8685ex 114 . . 3 (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → (𝑧 ⊆ {∅} → (𝑧 = ∅ ∨ 𝑧 = {∅})))
8786alrimiv 1867 . 2 (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → ∀𝑧(𝑧 ⊆ {∅} → (𝑧 = ∅ ∨ 𝑧 = {∅})))
88 exmid01 4184 . 2 (EXMID ↔ ∀𝑧(𝑧 ⊆ {∅} → (𝑧 = ∅ ∨ 𝑧 = {∅})))
8987, 88sylibr 133 1 (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → EXMID)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  wal 1346   = wceq 1348  wex 1485  wcel 2141  wne 2340  wral 2448  wrex 2449  Vcvv 2730  cin 3120  wss 3121  c0 3414  ifcif 3526  {csn 3583   cuni 3796   class class class wbr 3989  cmpt 4050  EXMIDwem 4180  ωcom 4574   × cxp 4609  ccnv 4610  dom cdm 4611  ran crn 4612  cres 4613  Fun wfun 5192  wf 5194  1-1wf1 5195  ontowfo 5196  1-1-ontowf1o 5197  cfv 5198  1oc1o 6388  cen 6716  cdom 6717  cdju 7014  inrcinr 7023  casecdjucase 7060  xnninf 7096  Omnicomni 7110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-exmid 4181  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-1o 6395  df-2o 6396  df-map 6628  df-en 6719  df-dom 6720  df-dju 7015  df-inl 7024  df-inr 7025  df-case 7061  df-nninf 7097  df-omni 7111
This theorem is referenced by:  exmidsbthr  14055
  Copyright terms: Public domain W3C validator