Step | Hyp | Ref
| Expression |
1 | | simpl 108 |
. . . . . . 7
⊢
((∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) ∧ 𝑧 ⊆ {∅}) → ∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦)) |
2 | | nninfex 7086 |
. . . . . . . . . 10
⊢
ℕ∞ ∈ V |
3 | | fconstmpt 4651 |
. . . . . . . . . . . . . . 15
⊢ (ω
× {∅}) = (𝑖
∈ ω ↦ ∅) |
4 | | 0nninf 13884 |
. . . . . . . . . . . . . . 15
⊢ (ω
× {∅}) ∈ ℕ∞ |
5 | 3, 4 | eqeltrri 2240 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ ω ↦ ∅)
∈ ℕ∞ |
6 | 5 | fconst6 5387 |
. . . . . . . . . . . . 13
⊢ (𝑧 × {(𝑖 ∈ ω ↦ ∅)}):𝑧⟶ℕ∞ |
7 | 6 | a1i 9 |
. . . . . . . . . . . 12
⊢ (𝑧 ⊆ {∅} → (𝑧 × {(𝑖 ∈ ω ↦ ∅)}):𝑧⟶ℕ∞) |
8 | | ssel 3136 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ⊆ {∅} → (𝑢 ∈ 𝑧 → 𝑢 ∈ {∅})) |
9 | | elsni 3594 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 ∈ {∅} → 𝑢 = ∅) |
10 | 8, 9 | syl6 33 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ⊆ {∅} → (𝑢 ∈ 𝑧 → 𝑢 = ∅)) |
11 | | ssel 3136 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ⊆ {∅} → (𝑣 ∈ 𝑧 → 𝑣 ∈ {∅})) |
12 | | elsni 3594 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 ∈ {∅} → 𝑣 = ∅) |
13 | 11, 12 | syl6 33 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ⊆ {∅} → (𝑣 ∈ 𝑧 → 𝑣 = ∅)) |
14 | 10, 13 | anim12d 333 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ⊆ {∅} →
((𝑢 ∈ 𝑧 ∧ 𝑣 ∈ 𝑧) → (𝑢 = ∅ ∧ 𝑣 = ∅))) |
15 | | eqtr3 2185 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 = ∅ ∧ 𝑣 = ∅) → 𝑢 = 𝑣) |
16 | 14, 15 | syl6 33 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ⊆ {∅} →
((𝑢 ∈ 𝑧 ∧ 𝑣 ∈ 𝑧) → 𝑢 = 𝑣)) |
17 | 16 | imp 123 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ⊆ {∅} ∧ (𝑢 ∈ 𝑧 ∧ 𝑣 ∈ 𝑧)) → 𝑢 = 𝑣) |
18 | 17 | a1d 22 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ⊆ {∅} ∧ (𝑢 ∈ 𝑧 ∧ 𝑣 ∈ 𝑧)) → (((𝑧 × {(𝑖 ∈ ω ↦
∅)})‘𝑢) =
((𝑧 × {(𝑖 ∈ ω ↦
∅)})‘𝑣) →
𝑢 = 𝑣)) |
19 | 18 | ralrimivva 2548 |
. . . . . . . . . . . 12
⊢ (𝑧 ⊆ {∅} →
∀𝑢 ∈ 𝑧 ∀𝑣 ∈ 𝑧 (((𝑧 × {(𝑖 ∈ ω ↦
∅)})‘𝑢) =
((𝑧 × {(𝑖 ∈ ω ↦
∅)})‘𝑣) →
𝑢 = 𝑣)) |
20 | | dff13 5736 |
. . . . . . . . . . . 12
⊢ ((𝑧 × {(𝑖 ∈ ω ↦ ∅)}):𝑧–1-1→ℕ∞ ↔ ((𝑧 × {(𝑖 ∈ ω ↦ ∅)}):𝑧⟶ℕ∞ ∧
∀𝑢 ∈ 𝑧 ∀𝑣 ∈ 𝑧 (((𝑧 × {(𝑖 ∈ ω ↦
∅)})‘𝑢) =
((𝑧 × {(𝑖 ∈ ω ↦
∅)})‘𝑣) →
𝑢 = 𝑣))) |
21 | 7, 19, 20 | sylanbrc 414 |
. . . . . . . . . . 11
⊢ (𝑧 ⊆ {∅} → (𝑧 × {(𝑖 ∈ ω ↦ ∅)}):𝑧–1-1→ℕ∞) |
22 | | exmidsbthrlem.s |
. . . . . . . . . . . . 13
⊢ 𝑆 = (𝑝 ∈ ℕ∞ ↦
(𝑖 ∈ ω ↦
if(𝑖 = ∅,
1o, (𝑝‘∪ 𝑖)))) |
23 | 22 | peano4nninf 13886 |
. . . . . . . . . . . 12
⊢ 𝑆:ℕ∞–1-1→ℕ∞ |
24 | 23 | a1i 9 |
. . . . . . . . . . 11
⊢ (𝑧 ⊆ {∅} → 𝑆:ℕ∞–1-1→ℕ∞) |
25 | | disj 3457 |
. . . . . . . . . . . . 13
⊢ ((ran
(𝑧 × {(𝑖 ∈ ω ↦
∅)}) ∩ ran 𝑆) =
∅ ↔ ∀𝑎
∈ ran (𝑧 ×
{(𝑖 ∈ ω ↦
∅)}) ¬ 𝑎 ∈
ran 𝑆) |
26 | 22 | peano3nninf 13887 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 ∈
ℕ∞ → (𝑆‘𝑏) ≠ (𝑘 ∈ ω ↦
∅)) |
27 | | eqidd 2166 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑖 → ∅ = ∅) |
28 | 27 | cbvmptv 4078 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ ω ↦ ∅)
= (𝑖 ∈ ω ↦
∅) |
29 | 28 | neeq2i 2352 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑆‘𝑏) ≠ (𝑘 ∈ ω ↦ ∅) ↔
(𝑆‘𝑏) ≠ (𝑖 ∈ ω ↦
∅)) |
30 | 26, 29 | sylib 121 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 ∈
ℕ∞ → (𝑆‘𝑏) ≠ (𝑖 ∈ ω ↦
∅)) |
31 | 30 | neneqd 2357 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 ∈
ℕ∞ → ¬ (𝑆‘𝑏) = (𝑖 ∈ ω ↦
∅)) |
32 | 31 | nrex 2558 |
. . . . . . . . . . . . . . . 16
⊢ ¬
∃𝑏 ∈
ℕ∞ (𝑆‘𝑏) = (𝑖 ∈ ω ↦
∅) |
33 | | f1dm 5398 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑆:ℕ∞–1-1→ℕ∞ → dom
𝑆 =
ℕ∞) |
34 | 23, 33 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ dom 𝑆 =
ℕ∞ |
35 | | eqcom 2167 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ ω ↦ ∅)
= (𝑆‘𝑏) ↔ (𝑆‘𝑏) = (𝑖 ∈ ω ↦
∅)) |
36 | 34, 35 | rexeqbii 2479 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑏 ∈ dom
𝑆(𝑖 ∈ ω ↦ ∅) = (𝑆‘𝑏) ↔ ∃𝑏 ∈ ℕ∞ (𝑆‘𝑏) = (𝑖 ∈ ω ↦
∅)) |
37 | 32, 36 | mtbir 661 |
. . . . . . . . . . . . . . 15
⊢ ¬
∃𝑏 ∈ dom 𝑆(𝑖 ∈ ω ↦ ∅) = (𝑆‘𝑏) |
38 | 22 | funmpt2 5227 |
. . . . . . . . . . . . . . . 16
⊢ Fun 𝑆 |
39 | | elrnrexdm 5624 |
. . . . . . . . . . . . . . . 16
⊢ (Fun
𝑆 → ((𝑖 ∈ ω ↦ ∅)
∈ ran 𝑆 →
∃𝑏 ∈ dom 𝑆(𝑖 ∈ ω ↦ ∅) = (𝑆‘𝑏))) |
40 | 38, 39 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ ω ↦ ∅)
∈ ran 𝑆 →
∃𝑏 ∈ dom 𝑆(𝑖 ∈ ω ↦ ∅) = (𝑆‘𝑏)) |
41 | 37, 40 | mto 652 |
. . . . . . . . . . . . . 14
⊢ ¬
(𝑖 ∈ ω ↦
∅) ∈ ran 𝑆 |
42 | | rnxpss 5035 |
. . . . . . . . . . . . . . . . 17
⊢ ran
(𝑧 × {(𝑖 ∈ ω ↦
∅)}) ⊆ {(𝑖
∈ ω ↦ ∅)} |
43 | 42 | sseli 3138 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈ ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) →
𝑎 ∈ {(𝑖 ∈ ω ↦
∅)}) |
44 | | elsni 3594 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈ {(𝑖 ∈ ω ↦ ∅)} →
𝑎 = (𝑖 ∈ ω ↦
∅)) |
45 | 43, 44 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) →
𝑎 = (𝑖 ∈ ω ↦
∅)) |
46 | 45 | eleq1d 2235 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) →
(𝑎 ∈ ran 𝑆 ↔ (𝑖 ∈ ω ↦ ∅) ∈ ran
𝑆)) |
47 | 41, 46 | mtbiri 665 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) →
¬ 𝑎 ∈ ran 𝑆) |
48 | 25, 47 | mprgbir 2524 |
. . . . . . . . . . . 12
⊢ (ran
(𝑧 × {(𝑖 ∈ ω ↦
∅)}) ∩ ran 𝑆) =
∅ |
49 | 48 | a1i 9 |
. . . . . . . . . . 11
⊢ (𝑧 ⊆ {∅} → (ran
(𝑧 × {(𝑖 ∈ ω ↦
∅)}) ∩ ran 𝑆) =
∅) |
50 | 21, 24, 49 | casef1 7055 |
. . . . . . . . . 10
⊢ (𝑧 ⊆ {∅} →
case((𝑧 × {(𝑖 ∈ ω ↦
∅)}), 𝑆):(𝑧 ⊔
ℕ∞)–1-1→ℕ∞) |
51 | | f1domg 6724 |
. . . . . . . . . 10
⊢
(ℕ∞ ∈ V → (case((𝑧 × {(𝑖 ∈ ω ↦ ∅)}), 𝑆):(𝑧 ⊔
ℕ∞)–1-1→ℕ∞ → (𝑧 ⊔
ℕ∞) ≼
ℕ∞)) |
52 | 2, 50, 51 | mpsyl 65 |
. . . . . . . . 9
⊢ (𝑧 ⊆ {∅} → (𝑧 ⊔
ℕ∞) ≼
ℕ∞) |
53 | 52 | adantl 275 |
. . . . . . . 8
⊢
((∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) ∧ 𝑧 ⊆ {∅}) → (𝑧 ⊔
ℕ∞) ≼
ℕ∞) |
54 | | inrresf1 7027 |
. . . . . . . . 9
⊢ (inr
↾ ℕ∞):ℕ∞–1-1→(𝑧 ⊔
ℕ∞) |
55 | | vex 2729 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ V |
56 | | djuex 7008 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ V ∧
ℕ∞ ∈ V) → (𝑧 ⊔ ℕ∞) ∈
V) |
57 | 55, 2, 56 | mp2an 423 |
. . . . . . . . . 10
⊢ (𝑧 ⊔
ℕ∞) ∈ V |
58 | 57 | f1dom 6726 |
. . . . . . . . 9
⊢ ((inr
↾ ℕ∞):ℕ∞–1-1→(𝑧 ⊔ ℕ∞) →
ℕ∞ ≼ (𝑧 ⊔
ℕ∞)) |
59 | 54, 58 | ax-mp 5 |
. . . . . . . 8
⊢
ℕ∞ ≼ (𝑧 ⊔
ℕ∞) |
60 | 53, 59 | jctir 311 |
. . . . . . 7
⊢
((∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) ∧ 𝑧 ⊆ {∅}) → ((𝑧 ⊔
ℕ∞) ≼ ℕ∞ ∧
ℕ∞ ≼ (𝑧 ⊔
ℕ∞))) |
61 | | breq12 3987 |
. . . . . . . . . . 11
⊢ ((𝑥 = (𝑧 ⊔ ℕ∞) ∧
𝑦 =
ℕ∞) → (𝑥 ≼ 𝑦 ↔ (𝑧 ⊔ ℕ∞) ≼
ℕ∞)) |
62 | | breq12 3987 |
. . . . . . . . . . . 12
⊢ ((𝑦 = ℕ∞
∧ 𝑥 = (𝑧 ⊔
ℕ∞)) → (𝑦 ≼ 𝑥 ↔ ℕ∞ ≼
(𝑧 ⊔
ℕ∞))) |
63 | 62 | ancoms 266 |
. . . . . . . . . . 11
⊢ ((𝑥 = (𝑧 ⊔ ℕ∞) ∧
𝑦 =
ℕ∞) → (𝑦 ≼ 𝑥 ↔ ℕ∞ ≼
(𝑧 ⊔
ℕ∞))) |
64 | 61, 63 | anbi12d 465 |
. . . . . . . . . 10
⊢ ((𝑥 = (𝑧 ⊔ ℕ∞) ∧
𝑦 =
ℕ∞) → ((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) ↔ ((𝑧 ⊔ ℕ∞) ≼
ℕ∞ ∧ ℕ∞ ≼ (𝑧 ⊔
ℕ∞)))) |
65 | | breq12 3987 |
. . . . . . . . . 10
⊢ ((𝑥 = (𝑧 ⊔ ℕ∞) ∧
𝑦 =
ℕ∞) → (𝑥 ≈ 𝑦 ↔ (𝑧 ⊔ ℕ∞) ≈
ℕ∞)) |
66 | 64, 65 | imbi12d 233 |
. . . . . . . . 9
⊢ ((𝑥 = (𝑧 ⊔ ℕ∞) ∧
𝑦 =
ℕ∞) → (((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) ↔ (((𝑧 ⊔ ℕ∞) ≼
ℕ∞ ∧ ℕ∞ ≼ (𝑧 ⊔
ℕ∞)) → (𝑧 ⊔ ℕ∞) ≈
ℕ∞))) |
67 | 66 | spc2gv 2817 |
. . . . . . . 8
⊢ (((𝑧 ⊔
ℕ∞) ∈ V ∧ ℕ∞ ∈ V)
→ (∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) → (((𝑧 ⊔ ℕ∞) ≼
ℕ∞ ∧ ℕ∞ ≼ (𝑧 ⊔
ℕ∞)) → (𝑧 ⊔ ℕ∞) ≈
ℕ∞))) |
68 | 57, 2, 67 | mp2an 423 |
. . . . . . 7
⊢
(∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) → (((𝑧 ⊔ ℕ∞) ≼
ℕ∞ ∧ ℕ∞ ≼ (𝑧 ⊔
ℕ∞)) → (𝑧 ⊔ ℕ∞) ≈
ℕ∞)) |
69 | 1, 60, 68 | sylc 62 |
. . . . . 6
⊢
((∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) ∧ 𝑧 ⊆ {∅}) → (𝑧 ⊔
ℕ∞) ≈
ℕ∞) |
70 | | bren 6713 |
. . . . . 6
⊢ ((𝑧 ⊔
ℕ∞) ≈ ℕ∞ ↔
∃𝑓 𝑓:(𝑧 ⊔
ℕ∞)–1-1-onto→ℕ∞) |
71 | 69, 70 | sylib 121 |
. . . . 5
⊢
((∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) ∧ 𝑧 ⊆ {∅}) → ∃𝑓 𝑓:(𝑧 ⊔
ℕ∞)–1-1-onto→ℕ∞) |
72 | | nninfomni 13899 |
. . . . . . . . 9
⊢
ℕ∞ ∈ Omni |
73 | 72 | a1i 9 |
. . . . . . . 8
⊢
(((∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔
ℕ∞)–1-1-onto→ℕ∞) →
ℕ∞ ∈ Omni) |
74 | | f1ocnv 5445 |
. . . . . . . . . 10
⊢ (𝑓:(𝑧 ⊔
ℕ∞)–1-1-onto→ℕ∞ → ◡𝑓:ℕ∞–1-1-onto→(𝑧 ⊔
ℕ∞)) |
75 | | f1ofo 5439 |
. . . . . . . . . 10
⊢ (◡𝑓:ℕ∞–1-1-onto→(𝑧 ⊔ ℕ∞) →
◡𝑓:ℕ∞–onto→(𝑧 ⊔
ℕ∞)) |
76 | 74, 75 | syl 14 |
. . . . . . . . 9
⊢ (𝑓:(𝑧 ⊔
ℕ∞)–1-1-onto→ℕ∞ → ◡𝑓:ℕ∞–onto→(𝑧 ⊔
ℕ∞)) |
77 | 76 | adantl 275 |
. . . . . . . 8
⊢
(((∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔
ℕ∞)–1-1-onto→ℕ∞) → ◡𝑓:ℕ∞–onto→(𝑧 ⊔
ℕ∞)) |
78 | 73, 77 | fodjuomni 7113 |
. . . . . . 7
⊢
(((∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔
ℕ∞)–1-1-onto→ℕ∞) →
(∃𝑤 𝑤 ∈ 𝑧 ∨ 𝑧 = ∅)) |
79 | | sssnm 3734 |
. . . . . . . . . 10
⊢
(∃𝑤 𝑤 ∈ 𝑧 → (𝑧 ⊆ {∅} ↔ 𝑧 = {∅})) |
80 | 79 | biimpcd 158 |
. . . . . . . . 9
⊢ (𝑧 ⊆ {∅} →
(∃𝑤 𝑤 ∈ 𝑧 → 𝑧 = {∅})) |
81 | 80 | ad2antlr 481 |
. . . . . . . 8
⊢
(((∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔
ℕ∞)–1-1-onto→ℕ∞) →
(∃𝑤 𝑤 ∈ 𝑧 → 𝑧 = {∅})) |
82 | 81 | orim1d 777 |
. . . . . . 7
⊢
(((∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔
ℕ∞)–1-1-onto→ℕ∞) →
((∃𝑤 𝑤 ∈ 𝑧 ∨ 𝑧 = ∅) → (𝑧 = {∅} ∨ 𝑧 = ∅))) |
83 | 78, 82 | mpd 13 |
. . . . . 6
⊢
(((∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔
ℕ∞)–1-1-onto→ℕ∞) → (𝑧 = {∅} ∨ 𝑧 = ∅)) |
84 | 83 | orcomd 719 |
. . . . 5
⊢
(((∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔
ℕ∞)–1-1-onto→ℕ∞) → (𝑧 = ∅ ∨ 𝑧 = {∅})) |
85 | 71, 84 | exlimddv 1886 |
. . . 4
⊢
((∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) ∧ 𝑧 ⊆ {∅}) → (𝑧 = ∅ ∨ 𝑧 = {∅})) |
86 | 85 | ex 114 |
. . 3
⊢
(∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) → (𝑧 ⊆ {∅} → (𝑧 = ∅ ∨ 𝑧 = {∅}))) |
87 | 86 | alrimiv 1862 |
. 2
⊢
(∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) → ∀𝑧(𝑧 ⊆ {∅} → (𝑧 = ∅ ∨ 𝑧 = {∅}))) |
88 | | exmid01 4177 |
. 2
⊢
(EXMID ↔ ∀𝑧(𝑧 ⊆ {∅} → (𝑧 = ∅ ∨ 𝑧 = {∅}))) |
89 | 87, 88 | sylibr 133 |
1
⊢
(∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) →
EXMID) |