| Step | Hyp | Ref
| Expression |
| 1 | | simpl 109 |
. . . . . . 7
⊢
((∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) ∧ 𝑧 ⊆ {∅}) → ∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦)) |
| 2 | | nninfex 7196 |
. . . . . . . . . 10
⊢
ℕ∞ ∈ V |
| 3 | | fconstmpt 4711 |
. . . . . . . . . . . . . . 15
⊢ (ω
× {∅}) = (𝑖
∈ ω ↦ ∅) |
| 4 | | 0nninf 15735 |
. . . . . . . . . . . . . . 15
⊢ (ω
× {∅}) ∈ ℕ∞ |
| 5 | 3, 4 | eqeltrri 2270 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ ω ↦ ∅)
∈ ℕ∞ |
| 6 | 5 | fconst6 5460 |
. . . . . . . . . . . . 13
⊢ (𝑧 × {(𝑖 ∈ ω ↦ ∅)}):𝑧⟶ℕ∞ |
| 7 | 6 | a1i 9 |
. . . . . . . . . . . 12
⊢ (𝑧 ⊆ {∅} → (𝑧 × {(𝑖 ∈ ω ↦ ∅)}):𝑧⟶ℕ∞) |
| 8 | | ssel 3178 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ⊆ {∅} → (𝑢 ∈ 𝑧 → 𝑢 ∈ {∅})) |
| 9 | | elsni 3641 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 ∈ {∅} → 𝑢 = ∅) |
| 10 | 8, 9 | syl6 33 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ⊆ {∅} → (𝑢 ∈ 𝑧 → 𝑢 = ∅)) |
| 11 | | ssel 3178 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ⊆ {∅} → (𝑣 ∈ 𝑧 → 𝑣 ∈ {∅})) |
| 12 | | elsni 3641 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 ∈ {∅} → 𝑣 = ∅) |
| 13 | 11, 12 | syl6 33 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ⊆ {∅} → (𝑣 ∈ 𝑧 → 𝑣 = ∅)) |
| 14 | 10, 13 | anim12d 335 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ⊆ {∅} →
((𝑢 ∈ 𝑧 ∧ 𝑣 ∈ 𝑧) → (𝑢 = ∅ ∧ 𝑣 = ∅))) |
| 15 | | eqtr3 2216 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 = ∅ ∧ 𝑣 = ∅) → 𝑢 = 𝑣) |
| 16 | 14, 15 | syl6 33 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ⊆ {∅} →
((𝑢 ∈ 𝑧 ∧ 𝑣 ∈ 𝑧) → 𝑢 = 𝑣)) |
| 17 | 16 | imp 124 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ⊆ {∅} ∧ (𝑢 ∈ 𝑧 ∧ 𝑣 ∈ 𝑧)) → 𝑢 = 𝑣) |
| 18 | 17 | a1d 22 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ⊆ {∅} ∧ (𝑢 ∈ 𝑧 ∧ 𝑣 ∈ 𝑧)) → (((𝑧 × {(𝑖 ∈ ω ↦
∅)})‘𝑢) =
((𝑧 × {(𝑖 ∈ ω ↦
∅)})‘𝑣) →
𝑢 = 𝑣)) |
| 19 | 18 | ralrimivva 2579 |
. . . . . . . . . . . 12
⊢ (𝑧 ⊆ {∅} →
∀𝑢 ∈ 𝑧 ∀𝑣 ∈ 𝑧 (((𝑧 × {(𝑖 ∈ ω ↦
∅)})‘𝑢) =
((𝑧 × {(𝑖 ∈ ω ↦
∅)})‘𝑣) →
𝑢 = 𝑣)) |
| 20 | | dff13 5818 |
. . . . . . . . . . . 12
⊢ ((𝑧 × {(𝑖 ∈ ω ↦ ∅)}):𝑧–1-1→ℕ∞ ↔ ((𝑧 × {(𝑖 ∈ ω ↦ ∅)}):𝑧⟶ℕ∞ ∧
∀𝑢 ∈ 𝑧 ∀𝑣 ∈ 𝑧 (((𝑧 × {(𝑖 ∈ ω ↦
∅)})‘𝑢) =
((𝑧 × {(𝑖 ∈ ω ↦
∅)})‘𝑣) →
𝑢 = 𝑣))) |
| 21 | 7, 19, 20 | sylanbrc 417 |
. . . . . . . . . . 11
⊢ (𝑧 ⊆ {∅} → (𝑧 × {(𝑖 ∈ ω ↦ ∅)}):𝑧–1-1→ℕ∞) |
| 22 | | exmidsbthrlem.s |
. . . . . . . . . . . . 13
⊢ 𝑆 = (𝑝 ∈ ℕ∞ ↦
(𝑖 ∈ ω ↦
if(𝑖 = ∅,
1o, (𝑝‘∪ 𝑖)))) |
| 23 | 22 | peano4nninf 15737 |
. . . . . . . . . . . 12
⊢ 𝑆:ℕ∞–1-1→ℕ∞ |
| 24 | 23 | a1i 9 |
. . . . . . . . . . 11
⊢ (𝑧 ⊆ {∅} → 𝑆:ℕ∞–1-1→ℕ∞) |
| 25 | | disj 3500 |
. . . . . . . . . . . . 13
⊢ ((ran
(𝑧 × {(𝑖 ∈ ω ↦
∅)}) ∩ ran 𝑆) =
∅ ↔ ∀𝑎
∈ ran (𝑧 ×
{(𝑖 ∈ ω ↦
∅)}) ¬ 𝑎 ∈
ran 𝑆) |
| 26 | 22 | peano3nninf 15738 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 ∈
ℕ∞ → (𝑆‘𝑏) ≠ (𝑘 ∈ ω ↦
∅)) |
| 27 | | eqidd 2197 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑖 → ∅ = ∅) |
| 28 | 27 | cbvmptv 4130 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ ω ↦ ∅)
= (𝑖 ∈ ω ↦
∅) |
| 29 | 28 | neeq2i 2383 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑆‘𝑏) ≠ (𝑘 ∈ ω ↦ ∅) ↔
(𝑆‘𝑏) ≠ (𝑖 ∈ ω ↦
∅)) |
| 30 | 26, 29 | sylib 122 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 ∈
ℕ∞ → (𝑆‘𝑏) ≠ (𝑖 ∈ ω ↦
∅)) |
| 31 | 30 | neneqd 2388 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 ∈
ℕ∞ → ¬ (𝑆‘𝑏) = (𝑖 ∈ ω ↦
∅)) |
| 32 | 31 | nrex 2589 |
. . . . . . . . . . . . . . . 16
⊢ ¬
∃𝑏 ∈
ℕ∞ (𝑆‘𝑏) = (𝑖 ∈ ω ↦
∅) |
| 33 | | f1dm 5471 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑆:ℕ∞–1-1→ℕ∞ → dom
𝑆 =
ℕ∞) |
| 34 | 23, 33 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ dom 𝑆 =
ℕ∞ |
| 35 | | eqcom 2198 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ ω ↦ ∅)
= (𝑆‘𝑏) ↔ (𝑆‘𝑏) = (𝑖 ∈ ω ↦
∅)) |
| 36 | 34, 35 | rexeqbii 2510 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑏 ∈ dom
𝑆(𝑖 ∈ ω ↦ ∅) = (𝑆‘𝑏) ↔ ∃𝑏 ∈ ℕ∞ (𝑆‘𝑏) = (𝑖 ∈ ω ↦
∅)) |
| 37 | 32, 36 | mtbir 672 |
. . . . . . . . . . . . . . 15
⊢ ¬
∃𝑏 ∈ dom 𝑆(𝑖 ∈ ω ↦ ∅) = (𝑆‘𝑏) |
| 38 | 22 | funmpt2 5298 |
. . . . . . . . . . . . . . . 16
⊢ Fun 𝑆 |
| 39 | | elrnrexdm 5704 |
. . . . . . . . . . . . . . . 16
⊢ (Fun
𝑆 → ((𝑖 ∈ ω ↦ ∅)
∈ ran 𝑆 →
∃𝑏 ∈ dom 𝑆(𝑖 ∈ ω ↦ ∅) = (𝑆‘𝑏))) |
| 40 | 38, 39 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ ω ↦ ∅)
∈ ran 𝑆 →
∃𝑏 ∈ dom 𝑆(𝑖 ∈ ω ↦ ∅) = (𝑆‘𝑏)) |
| 41 | 37, 40 | mto 663 |
. . . . . . . . . . . . . 14
⊢ ¬
(𝑖 ∈ ω ↦
∅) ∈ ran 𝑆 |
| 42 | | rnxpss 5102 |
. . . . . . . . . . . . . . . . 17
⊢ ran
(𝑧 × {(𝑖 ∈ ω ↦
∅)}) ⊆ {(𝑖
∈ ω ↦ ∅)} |
| 43 | 42 | sseli 3180 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈ ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) →
𝑎 ∈ {(𝑖 ∈ ω ↦
∅)}) |
| 44 | | elsni 3641 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈ {(𝑖 ∈ ω ↦ ∅)} →
𝑎 = (𝑖 ∈ ω ↦
∅)) |
| 45 | 43, 44 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) →
𝑎 = (𝑖 ∈ ω ↦
∅)) |
| 46 | 45 | eleq1d 2265 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) →
(𝑎 ∈ ran 𝑆 ↔ (𝑖 ∈ ω ↦ ∅) ∈ ran
𝑆)) |
| 47 | 41, 46 | mtbiri 676 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) →
¬ 𝑎 ∈ ran 𝑆) |
| 48 | 25, 47 | mprgbir 2555 |
. . . . . . . . . . . 12
⊢ (ran
(𝑧 × {(𝑖 ∈ ω ↦
∅)}) ∩ ran 𝑆) =
∅ |
| 49 | 48 | a1i 9 |
. . . . . . . . . . 11
⊢ (𝑧 ⊆ {∅} → (ran
(𝑧 × {(𝑖 ∈ ω ↦
∅)}) ∩ ran 𝑆) =
∅) |
| 50 | 21, 24, 49 | casef1 7165 |
. . . . . . . . . 10
⊢ (𝑧 ⊆ {∅} →
case((𝑧 × {(𝑖 ∈ ω ↦
∅)}), 𝑆):(𝑧 ⊔
ℕ∞)–1-1→ℕ∞) |
| 51 | | f1domg 6826 |
. . . . . . . . . 10
⊢
(ℕ∞ ∈ V → (case((𝑧 × {(𝑖 ∈ ω ↦ ∅)}), 𝑆):(𝑧 ⊔
ℕ∞)–1-1→ℕ∞ → (𝑧 ⊔
ℕ∞) ≼
ℕ∞)) |
| 52 | 2, 50, 51 | mpsyl 65 |
. . . . . . . . 9
⊢ (𝑧 ⊆ {∅} → (𝑧 ⊔
ℕ∞) ≼
ℕ∞) |
| 53 | 52 | adantl 277 |
. . . . . . . 8
⊢
((∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) ∧ 𝑧 ⊆ {∅}) → (𝑧 ⊔
ℕ∞) ≼
ℕ∞) |
| 54 | | inrresf1 7137 |
. . . . . . . . 9
⊢ (inr
↾ ℕ∞):ℕ∞–1-1→(𝑧 ⊔
ℕ∞) |
| 55 | | vex 2766 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ V |
| 56 | | djuex 7118 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ V ∧
ℕ∞ ∈ V) → (𝑧 ⊔ ℕ∞) ∈
V) |
| 57 | 55, 2, 56 | mp2an 426 |
. . . . . . . . . 10
⊢ (𝑧 ⊔
ℕ∞) ∈ V |
| 58 | 57 | f1dom 6828 |
. . . . . . . . 9
⊢ ((inr
↾ ℕ∞):ℕ∞–1-1→(𝑧 ⊔ ℕ∞) →
ℕ∞ ≼ (𝑧 ⊔
ℕ∞)) |
| 59 | 54, 58 | ax-mp 5 |
. . . . . . . 8
⊢
ℕ∞ ≼ (𝑧 ⊔
ℕ∞) |
| 60 | 53, 59 | jctir 313 |
. . . . . . 7
⊢
((∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) ∧ 𝑧 ⊆ {∅}) → ((𝑧 ⊔
ℕ∞) ≼ ℕ∞ ∧
ℕ∞ ≼ (𝑧 ⊔
ℕ∞))) |
| 61 | | breq12 4039 |
. . . . . . . . . . 11
⊢ ((𝑥 = (𝑧 ⊔ ℕ∞) ∧
𝑦 =
ℕ∞) → (𝑥 ≼ 𝑦 ↔ (𝑧 ⊔ ℕ∞) ≼
ℕ∞)) |
| 62 | | breq12 4039 |
. . . . . . . . . . . 12
⊢ ((𝑦 = ℕ∞
∧ 𝑥 = (𝑧 ⊔
ℕ∞)) → (𝑦 ≼ 𝑥 ↔ ℕ∞ ≼
(𝑧 ⊔
ℕ∞))) |
| 63 | 62 | ancoms 268 |
. . . . . . . . . . 11
⊢ ((𝑥 = (𝑧 ⊔ ℕ∞) ∧
𝑦 =
ℕ∞) → (𝑦 ≼ 𝑥 ↔ ℕ∞ ≼
(𝑧 ⊔
ℕ∞))) |
| 64 | 61, 63 | anbi12d 473 |
. . . . . . . . . 10
⊢ ((𝑥 = (𝑧 ⊔ ℕ∞) ∧
𝑦 =
ℕ∞) → ((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) ↔ ((𝑧 ⊔ ℕ∞) ≼
ℕ∞ ∧ ℕ∞ ≼ (𝑧 ⊔
ℕ∞)))) |
| 65 | | breq12 4039 |
. . . . . . . . . 10
⊢ ((𝑥 = (𝑧 ⊔ ℕ∞) ∧
𝑦 =
ℕ∞) → (𝑥 ≈ 𝑦 ↔ (𝑧 ⊔ ℕ∞) ≈
ℕ∞)) |
| 66 | 64, 65 | imbi12d 234 |
. . . . . . . . 9
⊢ ((𝑥 = (𝑧 ⊔ ℕ∞) ∧
𝑦 =
ℕ∞) → (((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) ↔ (((𝑧 ⊔ ℕ∞) ≼
ℕ∞ ∧ ℕ∞ ≼ (𝑧 ⊔
ℕ∞)) → (𝑧 ⊔ ℕ∞) ≈
ℕ∞))) |
| 67 | 66 | spc2gv 2855 |
. . . . . . . 8
⊢ (((𝑧 ⊔
ℕ∞) ∈ V ∧ ℕ∞ ∈ V)
→ (∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) → (((𝑧 ⊔ ℕ∞) ≼
ℕ∞ ∧ ℕ∞ ≼ (𝑧 ⊔
ℕ∞)) → (𝑧 ⊔ ℕ∞) ≈
ℕ∞))) |
| 68 | 57, 2, 67 | mp2an 426 |
. . . . . . 7
⊢
(∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) → (((𝑧 ⊔ ℕ∞) ≼
ℕ∞ ∧ ℕ∞ ≼ (𝑧 ⊔
ℕ∞)) → (𝑧 ⊔ ℕ∞) ≈
ℕ∞)) |
| 69 | 1, 60, 68 | sylc 62 |
. . . . . 6
⊢
((∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) ∧ 𝑧 ⊆ {∅}) → (𝑧 ⊔
ℕ∞) ≈
ℕ∞) |
| 70 | | bren 6815 |
. . . . . 6
⊢ ((𝑧 ⊔
ℕ∞) ≈ ℕ∞ ↔
∃𝑓 𝑓:(𝑧 ⊔
ℕ∞)–1-1-onto→ℕ∞) |
| 71 | 69, 70 | sylib 122 |
. . . . 5
⊢
((∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) ∧ 𝑧 ⊆ {∅}) → ∃𝑓 𝑓:(𝑧 ⊔
ℕ∞)–1-1-onto→ℕ∞) |
| 72 | | nninfomni 15750 |
. . . . . . . . 9
⊢
ℕ∞ ∈ Omni |
| 73 | 72 | a1i 9 |
. . . . . . . 8
⊢
(((∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔
ℕ∞)–1-1-onto→ℕ∞) →
ℕ∞ ∈ Omni) |
| 74 | | f1ocnv 5520 |
. . . . . . . . . 10
⊢ (𝑓:(𝑧 ⊔
ℕ∞)–1-1-onto→ℕ∞ → ◡𝑓:ℕ∞–1-1-onto→(𝑧 ⊔
ℕ∞)) |
| 75 | | f1ofo 5514 |
. . . . . . . . . 10
⊢ (◡𝑓:ℕ∞–1-1-onto→(𝑧 ⊔ ℕ∞) →
◡𝑓:ℕ∞–onto→(𝑧 ⊔
ℕ∞)) |
| 76 | 74, 75 | syl 14 |
. . . . . . . . 9
⊢ (𝑓:(𝑧 ⊔
ℕ∞)–1-1-onto→ℕ∞ → ◡𝑓:ℕ∞–onto→(𝑧 ⊔
ℕ∞)) |
| 77 | 76 | adantl 277 |
. . . . . . . 8
⊢
(((∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔
ℕ∞)–1-1-onto→ℕ∞) → ◡𝑓:ℕ∞–onto→(𝑧 ⊔
ℕ∞)) |
| 78 | 73, 77 | fodjuomni 7224 |
. . . . . . 7
⊢
(((∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔
ℕ∞)–1-1-onto→ℕ∞) →
(∃𝑤 𝑤 ∈ 𝑧 ∨ 𝑧 = ∅)) |
| 79 | | sssnm 3785 |
. . . . . . . . . 10
⊢
(∃𝑤 𝑤 ∈ 𝑧 → (𝑧 ⊆ {∅} ↔ 𝑧 = {∅})) |
| 80 | 79 | biimpcd 159 |
. . . . . . . . 9
⊢ (𝑧 ⊆ {∅} →
(∃𝑤 𝑤 ∈ 𝑧 → 𝑧 = {∅})) |
| 81 | 80 | ad2antlr 489 |
. . . . . . . 8
⊢
(((∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔
ℕ∞)–1-1-onto→ℕ∞) →
(∃𝑤 𝑤 ∈ 𝑧 → 𝑧 = {∅})) |
| 82 | 81 | orim1d 788 |
. . . . . . 7
⊢
(((∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔
ℕ∞)–1-1-onto→ℕ∞) →
((∃𝑤 𝑤 ∈ 𝑧 ∨ 𝑧 = ∅) → (𝑧 = {∅} ∨ 𝑧 = ∅))) |
| 83 | 78, 82 | mpd 13 |
. . . . . 6
⊢
(((∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔
ℕ∞)–1-1-onto→ℕ∞) → (𝑧 = {∅} ∨ 𝑧 = ∅)) |
| 84 | 83 | orcomd 730 |
. . . . 5
⊢
(((∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔
ℕ∞)–1-1-onto→ℕ∞) → (𝑧 = ∅ ∨ 𝑧 = {∅})) |
| 85 | 71, 84 | exlimddv 1913 |
. . . 4
⊢
((∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) ∧ 𝑧 ⊆ {∅}) → (𝑧 = ∅ ∨ 𝑧 = {∅})) |
| 86 | 85 | ex 115 |
. . 3
⊢
(∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) → (𝑧 ⊆ {∅} → (𝑧 = ∅ ∨ 𝑧 = {∅}))) |
| 87 | 86 | alrimiv 1888 |
. 2
⊢
(∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) → ∀𝑧(𝑧 ⊆ {∅} → (𝑧 = ∅ ∨ 𝑧 = {∅}))) |
| 88 | | exmid01 4232 |
. 2
⊢
(EXMID ↔ ∀𝑧(𝑧 ⊆ {∅} → (𝑧 = ∅ ∨ 𝑧 = {∅}))) |
| 89 | 87, 88 | sylibr 134 |
1
⊢
(∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) →
EXMID) |