Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  exmidsbthrlem GIF version

Theorem exmidsbthrlem 13901
Description: Lemma for exmidsbthr 13902. (Contributed by Jim Kingdon, 11-Aug-2022.)
Hypothesis
Ref Expression
exmidsbthrlem.s 𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))
Assertion
Ref Expression
exmidsbthrlem (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → EXMID)
Distinct variable groups:   𝑆,𝑖   𝑖,𝑝   𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑝)

Proof of Theorem exmidsbthrlem
Dummy variables 𝑎 𝑏 𝑘 𝑧 𝑓 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . . . . 7 ((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) → ∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦))
2 nninfex 7086 . . . . . . . . . 10 ∈ V
3 fconstmpt 4651 . . . . . . . . . . . . . . 15 (ω × {∅}) = (𝑖 ∈ ω ↦ ∅)
4 0nninf 13884 . . . . . . . . . . . . . . 15 (ω × {∅}) ∈ ℕ
53, 4eqeltrri 2240 . . . . . . . . . . . . . 14 (𝑖 ∈ ω ↦ ∅) ∈ ℕ
65fconst6 5387 . . . . . . . . . . . . 13 (𝑧 × {(𝑖 ∈ ω ↦ ∅)}):𝑧⟶ℕ
76a1i 9 . . . . . . . . . . . 12 (𝑧 ⊆ {∅} → (𝑧 × {(𝑖 ∈ ω ↦ ∅)}):𝑧⟶ℕ)
8 ssel 3136 . . . . . . . . . . . . . . . . . 18 (𝑧 ⊆ {∅} → (𝑢𝑧𝑢 ∈ {∅}))
9 elsni 3594 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ {∅} → 𝑢 = ∅)
108, 9syl6 33 . . . . . . . . . . . . . . . . 17 (𝑧 ⊆ {∅} → (𝑢𝑧𝑢 = ∅))
11 ssel 3136 . . . . . . . . . . . . . . . . . 18 (𝑧 ⊆ {∅} → (𝑣𝑧𝑣 ∈ {∅}))
12 elsni 3594 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ {∅} → 𝑣 = ∅)
1311, 12syl6 33 . . . . . . . . . . . . . . . . 17 (𝑧 ⊆ {∅} → (𝑣𝑧𝑣 = ∅))
1410, 13anim12d 333 . . . . . . . . . . . . . . . 16 (𝑧 ⊆ {∅} → ((𝑢𝑧𝑣𝑧) → (𝑢 = ∅ ∧ 𝑣 = ∅)))
15 eqtr3 2185 . . . . . . . . . . . . . . . 16 ((𝑢 = ∅ ∧ 𝑣 = ∅) → 𝑢 = 𝑣)
1614, 15syl6 33 . . . . . . . . . . . . . . 15 (𝑧 ⊆ {∅} → ((𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣))
1716imp 123 . . . . . . . . . . . . . 14 ((𝑧 ⊆ {∅} ∧ (𝑢𝑧𝑣𝑧)) → 𝑢 = 𝑣)
1817a1d 22 . . . . . . . . . . . . 13 ((𝑧 ⊆ {∅} ∧ (𝑢𝑧𝑣𝑧)) → (((𝑧 × {(𝑖 ∈ ω ↦ ∅)})‘𝑢) = ((𝑧 × {(𝑖 ∈ ω ↦ ∅)})‘𝑣) → 𝑢 = 𝑣))
1918ralrimivva 2548 . . . . . . . . . . . 12 (𝑧 ⊆ {∅} → ∀𝑢𝑧𝑣𝑧 (((𝑧 × {(𝑖 ∈ ω ↦ ∅)})‘𝑢) = ((𝑧 × {(𝑖 ∈ ω ↦ ∅)})‘𝑣) → 𝑢 = 𝑣))
20 dff13 5736 . . . . . . . . . . . 12 ((𝑧 × {(𝑖 ∈ ω ↦ ∅)}):𝑧1-1→ℕ ↔ ((𝑧 × {(𝑖 ∈ ω ↦ ∅)}):𝑧⟶ℕ ∧ ∀𝑢𝑧𝑣𝑧 (((𝑧 × {(𝑖 ∈ ω ↦ ∅)})‘𝑢) = ((𝑧 × {(𝑖 ∈ ω ↦ ∅)})‘𝑣) → 𝑢 = 𝑣)))
217, 19, 20sylanbrc 414 . . . . . . . . . . 11 (𝑧 ⊆ {∅} → (𝑧 × {(𝑖 ∈ ω ↦ ∅)}):𝑧1-1→ℕ)
22 exmidsbthrlem.s . . . . . . . . . . . . 13 𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))
2322peano4nninf 13886 . . . . . . . . . . . 12 𝑆:ℕ1-1→ℕ
2423a1i 9 . . . . . . . . . . 11 (𝑧 ⊆ {∅} → 𝑆:ℕ1-1→ℕ)
25 disj 3457 . . . . . . . . . . . . 13 ((ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) ∩ ran 𝑆) = ∅ ↔ ∀𝑎 ∈ ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) ¬ 𝑎 ∈ ran 𝑆)
2622peano3nninf 13887 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ ℕ → (𝑆𝑏) ≠ (𝑘 ∈ ω ↦ ∅))
27 eqidd 2166 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → ∅ = ∅)
2827cbvmptv 4078 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ω ↦ ∅) = (𝑖 ∈ ω ↦ ∅)
2928neeq2i 2352 . . . . . . . . . . . . . . . . . . 19 ((𝑆𝑏) ≠ (𝑘 ∈ ω ↦ ∅) ↔ (𝑆𝑏) ≠ (𝑖 ∈ ω ↦ ∅))
3026, 29sylib 121 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℕ → (𝑆𝑏) ≠ (𝑖 ∈ ω ↦ ∅))
3130neneqd 2357 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ ℕ → ¬ (𝑆𝑏) = (𝑖 ∈ ω ↦ ∅))
3231nrex 2558 . . . . . . . . . . . . . . . 16 ¬ ∃𝑏 ∈ ℕ (𝑆𝑏) = (𝑖 ∈ ω ↦ ∅)
33 f1dm 5398 . . . . . . . . . . . . . . . . . 18 (𝑆:ℕ1-1→ℕ → dom 𝑆 = ℕ)
3423, 33ax-mp 5 . . . . . . . . . . . . . . . . 17 dom 𝑆 = ℕ
35 eqcom 2167 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ω ↦ ∅) = (𝑆𝑏) ↔ (𝑆𝑏) = (𝑖 ∈ ω ↦ ∅))
3634, 35rexeqbii 2479 . . . . . . . . . . . . . . . 16 (∃𝑏 ∈ dom 𝑆(𝑖 ∈ ω ↦ ∅) = (𝑆𝑏) ↔ ∃𝑏 ∈ ℕ (𝑆𝑏) = (𝑖 ∈ ω ↦ ∅))
3732, 36mtbir 661 . . . . . . . . . . . . . . 15 ¬ ∃𝑏 ∈ dom 𝑆(𝑖 ∈ ω ↦ ∅) = (𝑆𝑏)
3822funmpt2 5227 . . . . . . . . . . . . . . . 16 Fun 𝑆
39 elrnrexdm 5624 . . . . . . . . . . . . . . . 16 (Fun 𝑆 → ((𝑖 ∈ ω ↦ ∅) ∈ ran 𝑆 → ∃𝑏 ∈ dom 𝑆(𝑖 ∈ ω ↦ ∅) = (𝑆𝑏)))
4038, 39ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ω ↦ ∅) ∈ ran 𝑆 → ∃𝑏 ∈ dom 𝑆(𝑖 ∈ ω ↦ ∅) = (𝑆𝑏))
4137, 40mto 652 . . . . . . . . . . . . . 14 ¬ (𝑖 ∈ ω ↦ ∅) ∈ ran 𝑆
42 rnxpss 5035 . . . . . . . . . . . . . . . . 17 ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) ⊆ {(𝑖 ∈ ω ↦ ∅)}
4342sseli 3138 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) → 𝑎 ∈ {(𝑖 ∈ ω ↦ ∅)})
44 elsni 3594 . . . . . . . . . . . . . . . 16 (𝑎 ∈ {(𝑖 ∈ ω ↦ ∅)} → 𝑎 = (𝑖 ∈ ω ↦ ∅))
4543, 44syl 14 . . . . . . . . . . . . . . 15 (𝑎 ∈ ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) → 𝑎 = (𝑖 ∈ ω ↦ ∅))
4645eleq1d 2235 . . . . . . . . . . . . . 14 (𝑎 ∈ ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) → (𝑎 ∈ ran 𝑆 ↔ (𝑖 ∈ ω ↦ ∅) ∈ ran 𝑆))
4741, 46mtbiri 665 . . . . . . . . . . . . 13 (𝑎 ∈ ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) → ¬ 𝑎 ∈ ran 𝑆)
4825, 47mprgbir 2524 . . . . . . . . . . . 12 (ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) ∩ ran 𝑆) = ∅
4948a1i 9 . . . . . . . . . . 11 (𝑧 ⊆ {∅} → (ran (𝑧 × {(𝑖 ∈ ω ↦ ∅)}) ∩ ran 𝑆) = ∅)
5021, 24, 49casef1 7055 . . . . . . . . . 10 (𝑧 ⊆ {∅} → case((𝑧 × {(𝑖 ∈ ω ↦ ∅)}), 𝑆):(𝑧 ⊔ ℕ)–1-1→ℕ)
51 f1domg 6724 . . . . . . . . . 10 (ℕ ∈ V → (case((𝑧 × {(𝑖 ∈ ω ↦ ∅)}), 𝑆):(𝑧 ⊔ ℕ)–1-1→ℕ → (𝑧 ⊔ ℕ) ≼ ℕ))
522, 50, 51mpsyl 65 . . . . . . . . 9 (𝑧 ⊆ {∅} → (𝑧 ⊔ ℕ) ≼ ℕ)
5352adantl 275 . . . . . . . 8 ((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) → (𝑧 ⊔ ℕ) ≼ ℕ)
54 inrresf1 7027 . . . . . . . . 9 (inr ↾ ℕ):ℕ1-1→(𝑧 ⊔ ℕ)
55 vex 2729 . . . . . . . . . . 11 𝑧 ∈ V
56 djuex 7008 . . . . . . . . . . 11 ((𝑧 ∈ V ∧ ℕ ∈ V) → (𝑧 ⊔ ℕ) ∈ V)
5755, 2, 56mp2an 423 . . . . . . . . . 10 (𝑧 ⊔ ℕ) ∈ V
5857f1dom 6726 . . . . . . . . 9 ((inr ↾ ℕ):ℕ1-1→(𝑧 ⊔ ℕ) → ℕ ≼ (𝑧 ⊔ ℕ))
5954, 58ax-mp 5 . . . . . . . 8 ≼ (𝑧 ⊔ ℕ)
6053, 59jctir 311 . . . . . . 7 ((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) → ((𝑧 ⊔ ℕ) ≼ ℕ ∧ ℕ ≼ (𝑧 ⊔ ℕ)))
61 breq12 3987 . . . . . . . . . . 11 ((𝑥 = (𝑧 ⊔ ℕ) ∧ 𝑦 = ℕ) → (𝑥𝑦 ↔ (𝑧 ⊔ ℕ) ≼ ℕ))
62 breq12 3987 . . . . . . . . . . . 12 ((𝑦 = ℕ𝑥 = (𝑧 ⊔ ℕ)) → (𝑦𝑥 ↔ ℕ ≼ (𝑧 ⊔ ℕ)))
6362ancoms 266 . . . . . . . . . . 11 ((𝑥 = (𝑧 ⊔ ℕ) ∧ 𝑦 = ℕ) → (𝑦𝑥 ↔ ℕ ≼ (𝑧 ⊔ ℕ)))
6461, 63anbi12d 465 . . . . . . . . . 10 ((𝑥 = (𝑧 ⊔ ℕ) ∧ 𝑦 = ℕ) → ((𝑥𝑦𝑦𝑥) ↔ ((𝑧 ⊔ ℕ) ≼ ℕ ∧ ℕ ≼ (𝑧 ⊔ ℕ))))
65 breq12 3987 . . . . . . . . . 10 ((𝑥 = (𝑧 ⊔ ℕ) ∧ 𝑦 = ℕ) → (𝑥𝑦 ↔ (𝑧 ⊔ ℕ) ≈ ℕ))
6664, 65imbi12d 233 . . . . . . . . 9 ((𝑥 = (𝑧 ⊔ ℕ) ∧ 𝑦 = ℕ) → (((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ↔ (((𝑧 ⊔ ℕ) ≼ ℕ ∧ ℕ ≼ (𝑧 ⊔ ℕ)) → (𝑧 ⊔ ℕ) ≈ ℕ)))
6766spc2gv 2817 . . . . . . . 8 (((𝑧 ⊔ ℕ) ∈ V ∧ ℕ ∈ V) → (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → (((𝑧 ⊔ ℕ) ≼ ℕ ∧ ℕ ≼ (𝑧 ⊔ ℕ)) → (𝑧 ⊔ ℕ) ≈ ℕ)))
6857, 2, 67mp2an 423 . . . . . . 7 (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → (((𝑧 ⊔ ℕ) ≼ ℕ ∧ ℕ ≼ (𝑧 ⊔ ℕ)) → (𝑧 ⊔ ℕ) ≈ ℕ))
691, 60, 68sylc 62 . . . . . 6 ((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) → (𝑧 ⊔ ℕ) ≈ ℕ)
70 bren 6713 . . . . . 6 ((𝑧 ⊔ ℕ) ≈ ℕ ↔ ∃𝑓 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ)
7169, 70sylib 121 . . . . 5 ((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) → ∃𝑓 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ)
72 nninfomni 13899 . . . . . . . . 9 ∈ Omni
7372a1i 9 . . . . . . . 8 (((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ) → ℕ ∈ Omni)
74 f1ocnv 5445 . . . . . . . . . 10 (𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ𝑓:ℕ1-1-onto→(𝑧 ⊔ ℕ))
75 f1ofo 5439 . . . . . . . . . 10 (𝑓:ℕ1-1-onto→(𝑧 ⊔ ℕ) → 𝑓:ℕonto→(𝑧 ⊔ ℕ))
7674, 75syl 14 . . . . . . . . 9 (𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ𝑓:ℕonto→(𝑧 ⊔ ℕ))
7776adantl 275 . . . . . . . 8 (((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ) → 𝑓:ℕonto→(𝑧 ⊔ ℕ))
7873, 77fodjuomni 7113 . . . . . . 7 (((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ) → (∃𝑤 𝑤𝑧𝑧 = ∅))
79 sssnm 3734 . . . . . . . . . 10 (∃𝑤 𝑤𝑧 → (𝑧 ⊆ {∅} ↔ 𝑧 = {∅}))
8079biimpcd 158 . . . . . . . . 9 (𝑧 ⊆ {∅} → (∃𝑤 𝑤𝑧𝑧 = {∅}))
8180ad2antlr 481 . . . . . . . 8 (((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ) → (∃𝑤 𝑤𝑧𝑧 = {∅}))
8281orim1d 777 . . . . . . 7 (((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ) → ((∃𝑤 𝑤𝑧𝑧 = ∅) → (𝑧 = {∅} ∨ 𝑧 = ∅)))
8378, 82mpd 13 . . . . . 6 (((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ) → (𝑧 = {∅} ∨ 𝑧 = ∅))
8483orcomd 719 . . . . 5 (((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) ∧ 𝑓:(𝑧 ⊔ ℕ)–1-1-onto→ℕ) → (𝑧 = ∅ ∨ 𝑧 = {∅}))
8571, 84exlimddv 1886 . . . 4 ((∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) ∧ 𝑧 ⊆ {∅}) → (𝑧 = ∅ ∨ 𝑧 = {∅}))
8685ex 114 . . 3 (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → (𝑧 ⊆ {∅} → (𝑧 = ∅ ∨ 𝑧 = {∅})))
8786alrimiv 1862 . 2 (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → ∀𝑧(𝑧 ⊆ {∅} → (𝑧 = ∅ ∨ 𝑧 = {∅})))
88 exmid01 4177 . 2 (EXMID ↔ ∀𝑧(𝑧 ⊆ {∅} → (𝑧 = ∅ ∨ 𝑧 = {∅})))
8987, 88sylibr 133 1 (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → EXMID)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  wal 1341   = wceq 1343  wex 1480  wcel 2136  wne 2336  wral 2444  wrex 2445  Vcvv 2726  cin 3115  wss 3116  c0 3409  ifcif 3520  {csn 3576   cuni 3789   class class class wbr 3982  cmpt 4043  EXMIDwem 4173  ωcom 4567   × cxp 4602  ccnv 4603  dom cdm 4604  ran crn 4605  cres 4606  Fun wfun 5182  wf 5184  1-1wf1 5185  ontowfo 5186  1-1-ontowf1o 5187  cfv 5188  1oc1o 6377  cen 6704  cdom 6705  cdju 7002  inrcinr 7011  casecdjucase 7048  xnninf 7084  Omnicomni 7098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-exmid 4174  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-1o 6384  df-2o 6385  df-map 6616  df-en 6707  df-dom 6708  df-dju 7003  df-inl 7012  df-inr 7013  df-case 7049  df-nninf 7085  df-omni 7099
This theorem is referenced by:  exmidsbthr  13902
  Copyright terms: Public domain W3C validator