ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnoprabg GIF version

Theorem fnoprabg 5976
Description: Functionality and domain of an operation class abstraction. (Contributed by NM, 28-Aug-2007.)
Assertion
Ref Expression
fnoprabg (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} Fn {⟨𝑥, 𝑦⟩ ∣ 𝜑})
Distinct variable groups:   𝑥,𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem fnoprabg
StepHypRef Expression
1 eumo 2058 . . . . . 6 (∃!𝑧𝜓 → ∃*𝑧𝜓)
21imim2i 12 . . . . 5 ((𝜑 → ∃!𝑧𝜓) → (𝜑 → ∃*𝑧𝜓))
3 moanimv 2101 . . . . 5 (∃*𝑧(𝜑𝜓) ↔ (𝜑 → ∃*𝑧𝜓))
42, 3sylibr 134 . . . 4 ((𝜑 → ∃!𝑧𝜓) → ∃*𝑧(𝜑𝜓))
542alimi 1456 . . 3 (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → ∀𝑥𝑦∃*𝑧(𝜑𝜓))
6 funoprabg 5974 . . 3 (∀𝑥𝑦∃*𝑧(𝜑𝜓) → Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)})
75, 6syl 14 . 2 (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)})
8 dmoprab 5956 . . 3 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝜑𝜓)}
9 nfa1 1541 . . . 4 𝑥𝑥𝑦(𝜑 → ∃!𝑧𝜓)
10 nfa2 1579 . . . 4 𝑦𝑥𝑦(𝜑 → ∃!𝑧𝜓)
11 simpl 109 . . . . . . . 8 ((𝜑𝜓) → 𝜑)
1211exlimiv 1598 . . . . . . 7 (∃𝑧(𝜑𝜓) → 𝜑)
13 euex 2056 . . . . . . . . . 10 (∃!𝑧𝜓 → ∃𝑧𝜓)
1413imim2i 12 . . . . . . . . 9 ((𝜑 → ∃!𝑧𝜓) → (𝜑 → ∃𝑧𝜓))
1514ancld 325 . . . . . . . 8 ((𝜑 → ∃!𝑧𝜓) → (𝜑 → (𝜑 ∧ ∃𝑧𝜓)))
16 19.42v 1906 . . . . . . . 8 (∃𝑧(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑧𝜓))
1715, 16imbitrrdi 162 . . . . . . 7 ((𝜑 → ∃!𝑧𝜓) → (𝜑 → ∃𝑧(𝜑𝜓)))
1812, 17impbid2 143 . . . . . 6 ((𝜑 → ∃!𝑧𝜓) → (∃𝑧(𝜑𝜓) ↔ 𝜑))
1918sps 1537 . . . . 5 (∀𝑦(𝜑 → ∃!𝑧𝜓) → (∃𝑧(𝜑𝜓) ↔ 𝜑))
2019sps 1537 . . . 4 (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → (∃𝑧(𝜑𝜓) ↔ 𝜑))
219, 10, 20opabbid 4069 . . 3 (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝜑𝜓)} = {⟨𝑥, 𝑦⟩ ∣ 𝜑})
228, 21eqtrid 2222 . 2 (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} = {⟨𝑥, 𝑦⟩ ∣ 𝜑})
23 df-fn 5220 . 2 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} Fn {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ (Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} ∧ dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} = {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
247, 22, 23sylanbrc 417 1 (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} Fn {⟨𝑥, 𝑦⟩ ∣ 𝜑})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1351   = wceq 1353  wex 1492  ∃!weu 2026  ∃*wmo 2027  {copab 4064  dom cdm 4627  Fun wfun 5211   Fn wfn 5212  {coprab 5876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-fun 5219  df-fn 5220  df-oprab 5879
This theorem is referenced by:  fnoprab  5978  ovg  6013
  Copyright terms: Public domain W3C validator