ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnoprabg GIF version

Theorem fnoprabg 6104
Description: Functionality and domain of an operation class abstraction. (Contributed by NM, 28-Aug-2007.)
Assertion
Ref Expression
fnoprabg (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} Fn {⟨𝑥, 𝑦⟩ ∣ 𝜑})
Distinct variable groups:   𝑥,𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem fnoprabg
StepHypRef Expression
1 eumo 2109 . . . . . 6 (∃!𝑧𝜓 → ∃*𝑧𝜓)
21imim2i 12 . . . . 5 ((𝜑 → ∃!𝑧𝜓) → (𝜑 → ∃*𝑧𝜓))
3 moanimv 2153 . . . . 5 (∃*𝑧(𝜑𝜓) ↔ (𝜑 → ∃*𝑧𝜓))
42, 3sylibr 134 . . . 4 ((𝜑 → ∃!𝑧𝜓) → ∃*𝑧(𝜑𝜓))
542alimi 1502 . . 3 (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → ∀𝑥𝑦∃*𝑧(𝜑𝜓))
6 funoprabg 6102 . . 3 (∀𝑥𝑦∃*𝑧(𝜑𝜓) → Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)})
75, 6syl 14 . 2 (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)})
8 dmoprab 6084 . . 3 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝜑𝜓)}
9 nfa1 1587 . . . 4 𝑥𝑥𝑦(𝜑 → ∃!𝑧𝜓)
10 nfa2 1625 . . . 4 𝑦𝑥𝑦(𝜑 → ∃!𝑧𝜓)
11 simpl 109 . . . . . . . 8 ((𝜑𝜓) → 𝜑)
1211exlimiv 1644 . . . . . . 7 (∃𝑧(𝜑𝜓) → 𝜑)
13 euex 2107 . . . . . . . . . 10 (∃!𝑧𝜓 → ∃𝑧𝜓)
1413imim2i 12 . . . . . . . . 9 ((𝜑 → ∃!𝑧𝜓) → (𝜑 → ∃𝑧𝜓))
1514ancld 325 . . . . . . . 8 ((𝜑 → ∃!𝑧𝜓) → (𝜑 → (𝜑 ∧ ∃𝑧𝜓)))
16 19.42v 1953 . . . . . . . 8 (∃𝑧(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑧𝜓))
1715, 16imbitrrdi 162 . . . . . . 7 ((𝜑 → ∃!𝑧𝜓) → (𝜑 → ∃𝑧(𝜑𝜓)))
1812, 17impbid2 143 . . . . . 6 ((𝜑 → ∃!𝑧𝜓) → (∃𝑧(𝜑𝜓) ↔ 𝜑))
1918sps 1583 . . . . 5 (∀𝑦(𝜑 → ∃!𝑧𝜓) → (∃𝑧(𝜑𝜓) ↔ 𝜑))
2019sps 1583 . . . 4 (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → (∃𝑧(𝜑𝜓) ↔ 𝜑))
219, 10, 20opabbid 4148 . . 3 (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝜑𝜓)} = {⟨𝑥, 𝑦⟩ ∣ 𝜑})
228, 21eqtrid 2274 . 2 (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} = {⟨𝑥, 𝑦⟩ ∣ 𝜑})
23 df-fn 5320 . 2 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} Fn {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ (Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} ∧ dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} = {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
247, 22, 23sylanbrc 417 1 (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} Fn {⟨𝑥, 𝑦⟩ ∣ 𝜑})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1393   = wceq 1395  wex 1538  ∃!weu 2077  ∃*wmo 2078  {copab 4143  dom cdm 4718  Fun wfun 5311   Fn wfn 5312  {coprab 6001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-fun 5319  df-fn 5320  df-oprab 6004
This theorem is referenced by:  fnoprab  6106  ovg  6143
  Copyright terms: Public domain W3C validator