ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnoprabg GIF version

Theorem fnoprabg 5919
Description: Functionality and domain of an operation class abstraction. (Contributed by NM, 28-Aug-2007.)
Assertion
Ref Expression
fnoprabg (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} Fn {⟨𝑥, 𝑦⟩ ∣ 𝜑})
Distinct variable groups:   𝑥,𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem fnoprabg
StepHypRef Expression
1 eumo 2038 . . . . . 6 (∃!𝑧𝜓 → ∃*𝑧𝜓)
21imim2i 12 . . . . 5 ((𝜑 → ∃!𝑧𝜓) → (𝜑 → ∃*𝑧𝜓))
3 moanimv 2081 . . . . 5 (∃*𝑧(𝜑𝜓) ↔ (𝜑 → ∃*𝑧𝜓))
42, 3sylibr 133 . . . 4 ((𝜑 → ∃!𝑧𝜓) → ∃*𝑧(𝜑𝜓))
542alimi 1436 . . 3 (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → ∀𝑥𝑦∃*𝑧(𝜑𝜓))
6 funoprabg 5917 . . 3 (∀𝑥𝑦∃*𝑧(𝜑𝜓) → Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)})
75, 6syl 14 . 2 (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)})
8 dmoprab 5899 . . 3 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝜑𝜓)}
9 nfa1 1521 . . . 4 𝑥𝑥𝑦(𝜑 → ∃!𝑧𝜓)
10 nfa2 1559 . . . 4 𝑦𝑥𝑦(𝜑 → ∃!𝑧𝜓)
11 simpl 108 . . . . . . . 8 ((𝜑𝜓) → 𝜑)
1211exlimiv 1578 . . . . . . 7 (∃𝑧(𝜑𝜓) → 𝜑)
13 euex 2036 . . . . . . . . . 10 (∃!𝑧𝜓 → ∃𝑧𝜓)
1413imim2i 12 . . . . . . . . 9 ((𝜑 → ∃!𝑧𝜓) → (𝜑 → ∃𝑧𝜓))
1514ancld 323 . . . . . . . 8 ((𝜑 → ∃!𝑧𝜓) → (𝜑 → (𝜑 ∧ ∃𝑧𝜓)))
16 19.42v 1886 . . . . . . . 8 (∃𝑧(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑧𝜓))
1715, 16syl6ibr 161 . . . . . . 7 ((𝜑 → ∃!𝑧𝜓) → (𝜑 → ∃𝑧(𝜑𝜓)))
1812, 17impbid2 142 . . . . . 6 ((𝜑 → ∃!𝑧𝜓) → (∃𝑧(𝜑𝜓) ↔ 𝜑))
1918sps 1517 . . . . 5 (∀𝑦(𝜑 → ∃!𝑧𝜓) → (∃𝑧(𝜑𝜓) ↔ 𝜑))
2019sps 1517 . . . 4 (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → (∃𝑧(𝜑𝜓) ↔ 𝜑))
219, 10, 20opabbid 4029 . . 3 (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝜑𝜓)} = {⟨𝑥, 𝑦⟩ ∣ 𝜑})
228, 21syl5eq 2202 . 2 (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} = {⟨𝑥, 𝑦⟩ ∣ 𝜑})
23 df-fn 5172 . 2 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} Fn {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ (Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} ∧ dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} = {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
247, 22, 23sylanbrc 414 1 (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} Fn {⟨𝑥, 𝑦⟩ ∣ 𝜑})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1333   = wceq 1335  wex 1472  ∃!weu 2006  ∃*wmo 2007  {copab 4024  dom cdm 4585  Fun wfun 5163   Fn wfn 5164  {coprab 5822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-opab 4026  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-fun 5171  df-fn 5172  df-oprab 5825
This theorem is referenced by:  fnoprab  5921  ovg  5956
  Copyright terms: Public domain W3C validator