| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfalt | GIF version | ||
| Description: Closed form of nfal 1590. (Contributed by Jim Kingdon, 11-May-2018.) |
| Ref | Expression |
|---|---|
| nfalt | ⊢ (∀𝑦Ⅎ𝑥𝜑 → Ⅎ𝑥∀𝑦𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alim 1471 | . . . 4 ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑦∀𝑥𝜑)) | |
| 2 | alcom 1492 | . . . 4 ⊢ (∀𝑦∀𝑥𝜑 ↔ ∀𝑥∀𝑦𝜑) | |
| 3 | 1, 2 | imbitrdi 161 | . . 3 ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) |
| 4 | 3 | alimi 1469 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) |
| 5 | df-nf 1475 | . . . 4 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
| 6 | 5 | albii 1484 | . . 3 ⊢ (∀𝑦Ⅎ𝑥𝜑 ↔ ∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑)) |
| 7 | alcom 1492 | . . 3 ⊢ (∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)) | |
| 8 | 6, 7 | bitri 184 | . 2 ⊢ (∀𝑦Ⅎ𝑥𝜑 ↔ ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)) |
| 9 | df-nf 1475 | . 2 ⊢ (Ⅎ𝑥∀𝑦𝜑 ↔ ∀𝑥(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) | |
| 10 | 4, 8, 9 | 3imtr4i 201 | 1 ⊢ (∀𝑦Ⅎ𝑥𝜑 → Ⅎ𝑥∀𝑦𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 Ⅎwnf 1474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: dvelimor 2037 |
| Copyright terms: Public domain | W3C validator |