ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbie2t GIF version

Theorem csbie2t 3129
Description: Conversion of implicit substitution to explicit substitution into a class (closed form of csbie2 3130). (Contributed by NM, 3-Sep-2007.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
csbie2t.1 𝐴 ∈ V
csbie2t.2 𝐵 ∈ V
Assertion
Ref Expression
csbie2t (∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐷)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem csbie2t
StepHypRef Expression
1 nfa1 1552 . 2 𝑥𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷)
2 nfcvd 2337 . 2 (∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷) → 𝑥𝐷)
3 csbie2t.1 . . 3 𝐴 ∈ V
43a1i 9 . 2 (∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷) → 𝐴 ∈ V)
5 nfa2 1590 . . . 4 𝑦𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷)
6 nfv 1539 . . . 4 𝑦 𝑥 = 𝐴
75, 6nfan 1576 . . 3 𝑦(∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷) ∧ 𝑥 = 𝐴)
8 nfcvd 2337 . . 3 ((∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷) ∧ 𝑥 = 𝐴) → 𝑦𝐷)
9 csbie2t.2 . . . 4 𝐵 ∈ V
109a1i 9 . . 3 ((∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷) ∧ 𝑥 = 𝐴) → 𝐵 ∈ V)
11 sp 1522 . . . . 5 (∀𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷) → ((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷))
1211sps 1548 . . . 4 (∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷) → ((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷))
1312impl 380 . . 3 (((∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷) ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷)
147, 8, 10, 13csbiedf 3121 . 2 ((∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷) ∧ 𝑥 = 𝐴) → 𝐵 / 𝑦𝐶 = 𝐷)
151, 2, 4, 14csbiedf 3121 1 (∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1362   = wceq 1364  wcel 2164  Vcvv 2760  csb 3080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-sbc 2986  df-csb 3081
This theorem is referenced by:  csbie2  3130
  Copyright terms: Public domain W3C validator