Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbie2t | GIF version |
Description: Conversion of implicit substitution to explicit substitution into a class (closed form of csbie2 3098). (Contributed by NM, 3-Sep-2007.) (Revised by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
csbie2t.1 | ⊢ 𝐴 ∈ V |
csbie2t.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
csbie2t | ⊢ (∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 1534 | . 2 ⊢ Ⅎ𝑥∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) | |
2 | nfcvd 2313 | . 2 ⊢ (∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) → Ⅎ𝑥𝐷) | |
3 | csbie2t.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | 3 | a1i 9 | . 2 ⊢ (∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) → 𝐴 ∈ V) |
5 | nfa2 1572 | . . . 4 ⊢ Ⅎ𝑦∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) | |
6 | nfv 1521 | . . . 4 ⊢ Ⅎ𝑦 𝑥 = 𝐴 | |
7 | 5, 6 | nfan 1558 | . . 3 ⊢ Ⅎ𝑦(∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) ∧ 𝑥 = 𝐴) |
8 | nfcvd 2313 | . . 3 ⊢ ((∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) ∧ 𝑥 = 𝐴) → Ⅎ𝑦𝐷) | |
9 | csbie2t.2 | . . . 4 ⊢ 𝐵 ∈ V | |
10 | 9 | a1i 9 | . . 3 ⊢ ((∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) ∧ 𝑥 = 𝐴) → 𝐵 ∈ V) |
11 | sp 1504 | . . . . 5 ⊢ (∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷)) | |
12 | 11 | sps 1530 | . . . 4 ⊢ (∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷)) |
13 | 12 | impl 378 | . . 3 ⊢ (((∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) |
14 | 7, 8, 10, 13 | csbiedf 3089 | . 2 ⊢ ((∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) ∧ 𝑥 = 𝐴) → ⦋𝐵 / 𝑦⦌𝐶 = 𝐷) |
15 | 1, 2, 4, 14 | csbiedf 3089 | 1 ⊢ (∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = 𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1346 = wceq 1348 ∈ wcel 2141 Vcvv 2730 ⦋csb 3049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-sbc 2956 df-csb 3050 |
This theorem is referenced by: csbie2 3098 |
Copyright terms: Public domain | W3C validator |