![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > csbie2t | GIF version |
Description: Conversion of implicit substitution to explicit substitution into a class (closed form of csbie2 2999). (Contributed by NM, 3-Sep-2007.) (Revised by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
csbie2t.1 | ⊢ 𝐴 ∈ V |
csbie2t.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
csbie2t | ⊢ (∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 1489 | . 2 ⊢ Ⅎ𝑥∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) | |
2 | nfcvd 2241 | . 2 ⊢ (∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) → Ⅎ𝑥𝐷) | |
3 | csbie2t.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | 3 | a1i 9 | . 2 ⊢ (∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) → 𝐴 ∈ V) |
5 | nfa2 1526 | . . . 4 ⊢ Ⅎ𝑦∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) | |
6 | nfv 1476 | . . . 4 ⊢ Ⅎ𝑦 𝑥 = 𝐴 | |
7 | 5, 6 | nfan 1512 | . . 3 ⊢ Ⅎ𝑦(∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) ∧ 𝑥 = 𝐴) |
8 | nfcvd 2241 | . . 3 ⊢ ((∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) ∧ 𝑥 = 𝐴) → Ⅎ𝑦𝐷) | |
9 | csbie2t.2 | . . . 4 ⊢ 𝐵 ∈ V | |
10 | 9 | a1i 9 | . . 3 ⊢ ((∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) ∧ 𝑥 = 𝐴) → 𝐵 ∈ V) |
11 | sp 1456 | . . . . 5 ⊢ (∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷)) | |
12 | 11 | sps 1485 | . . . 4 ⊢ (∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷)) |
13 | 12 | impl 375 | . . 3 ⊢ (((∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) |
14 | 7, 8, 10, 13 | csbiedf 2990 | . 2 ⊢ ((∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) ∧ 𝑥 = 𝐴) → ⦋𝐵 / 𝑦⦌𝐶 = 𝐷) |
15 | 1, 2, 4, 14 | csbiedf 2990 | 1 ⊢ (∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = 𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1297 = wceq 1299 ∈ wcel 1448 Vcvv 2641 ⦋csb 2955 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-v 2643 df-sbc 2863 df-csb 2956 |
This theorem is referenced by: csbie2 2999 |
Copyright terms: Public domain | W3C validator |