| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfeld | GIF version | ||
| Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeqd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfeqd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
| Ref | Expression |
|---|---|
| nfeld | ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clel 2225 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 2 | nfv 1574 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfcvd 2373 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝑦) | |
| 4 | nfeqd.1 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 5 | 3, 4 | nfeqd 2387 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 = 𝐴) |
| 6 | nfeqd.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 7 | 6 | nfcrd 2386 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐵) |
| 8 | 5, 7 | nfand 1614 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 9 | 2, 8 | nfexd 1807 | . 2 ⊢ (𝜑 → Ⅎ𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 10 | 1, 9 | nfxfrd 1521 | 1 ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 Ⅎwnf 1506 ∃wex 1538 ∈ wcel 2200 Ⅎwnfc 2359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-cleq 2222 df-clel 2225 df-nfc 2361 |
| This theorem is referenced by: nfneld 2503 nfraldw 2562 nfraldxy 2563 nfrexdxy 2564 nfreudxy 2705 nfsbc1d 3045 nfsbcd 3048 sbcrext 3106 nfsbcdw 3158 nfbrd 4128 nfriotadxy 5962 nfixpxy 6862 |
| Copyright terms: Public domain | W3C validator |