| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfeld | GIF version | ||
| Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeqd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfeqd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
| Ref | Expression |
|---|---|
| nfeld | ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clel 2192 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 2 | nfv 1542 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfcvd 2340 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝑦) | |
| 4 | nfeqd.1 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 5 | 3, 4 | nfeqd 2354 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 = 𝐴) |
| 6 | nfeqd.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 7 | 6 | nfcrd 2353 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐵) |
| 8 | 5, 7 | nfand 1582 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 9 | 2, 8 | nfexd 1775 | . 2 ⊢ (𝜑 → Ⅎ𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 10 | 1, 9 | nfxfrd 1489 | 1 ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 Ⅎwnf 1474 ∃wex 1506 ∈ wcel 2167 Ⅎwnfc 2326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-cleq 2189 df-clel 2192 df-nfc 2328 |
| This theorem is referenced by: nfneld 2470 nfraldw 2529 nfraldxy 2530 nfrexdxy 2531 nfreudxy 2671 nfsbc1d 3006 nfsbcd 3009 sbcrext 3067 nfsbcdw 3118 nfbrd 4079 nfriotadxy 5889 nfixpxy 6785 |
| Copyright terms: Public domain | W3C validator |