ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfel2 GIF version

Theorem nfel2 2345
Description: Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.)
Hypothesis
Ref Expression
nfeq2.1 𝑥𝐵
Assertion
Ref Expression
nfel2 𝑥 𝐴𝐵
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem nfel2
StepHypRef Expression
1 nfcv 2332 . 2 𝑥𝐴
2 nfeq2.1 . 2 𝑥𝐵
31, 2nfel 2341 1 𝑥 𝐴𝐵
Colors of variables: wff set class
Syntax hints:  wnf 1471  wcel 2160  wnfc 2319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-cleq 2182  df-clel 2185  df-nfc 2321
This theorem is referenced by:  elabgt  2893  opelopabsb  4278  eliunxp  4784  opeliunxp2  4785  tz6.12f  5563  0neqopab  5942  disjxp1  6262  opeliunxp2f  6264  cbvixp  6742  ctiunct  12494
  Copyright terms: Public domain W3C validator