ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfel2 GIF version

Theorem nfel2 2352
Description: Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.)
Hypothesis
Ref Expression
nfeq2.1 𝑥𝐵
Assertion
Ref Expression
nfel2 𝑥 𝐴𝐵
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem nfel2
StepHypRef Expression
1 nfcv 2339 . 2 𝑥𝐴
2 nfeq2.1 . 2 𝑥𝐵
31, 2nfel 2348 1 𝑥 𝐴𝐵
Colors of variables: wff set class
Syntax hints:  wnf 1474  wcel 2167  wnfc 2326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-cleq 2189  df-clel 2192  df-nfc 2328
This theorem is referenced by:  elabgt  2905  opelopabsb  4294  eliunxp  4805  opeliunxp2  4806  tz6.12f  5587  0neqopab  5967  disjxp1  6294  opeliunxp2f  6296  cbvixp  6774  ctiunct  12657
  Copyright terms: Public domain W3C validator