![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvelimdc | GIF version |
Description: Deduction form of dvelimc 2354. (Contributed by Mario Carneiro, 8-Oct-2016.) |
Ref | Expression |
---|---|
dvelimdc.1 | ⊢ Ⅎ𝑥𝜑 |
dvelimdc.2 | ⊢ Ⅎ𝑧𝜑 |
dvelimdc.3 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
dvelimdc.4 | ⊢ (𝜑 → Ⅎ𝑧𝐵) |
dvelimdc.5 | ⊢ (𝜑 → (𝑧 = 𝑦 → 𝐴 = 𝐵)) |
Ref | Expression |
---|---|
dvelimdc | ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1539 | . . 3 ⊢ Ⅎ𝑤(𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) | |
2 | dvelimdc.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
3 | dvelimdc.2 | . . . . 5 ⊢ Ⅎ𝑧𝜑 | |
4 | dvelimdc.3 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
5 | 4 | nfcrd 2346 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥 𝑤 ∈ 𝐴) |
6 | dvelimdc.4 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑧𝐵) | |
7 | 6 | nfcrd 2346 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑧 𝑤 ∈ 𝐵) |
8 | dvelimdc.5 | . . . . . 6 ⊢ (𝜑 → (𝑧 = 𝑦 → 𝐴 = 𝐵)) | |
9 | eleq2 2253 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝑤 ∈ 𝐴 ↔ 𝑤 ∈ 𝐵)) | |
10 | 8, 9 | syl6 33 | . . . . 5 ⊢ (𝜑 → (𝑧 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑤 ∈ 𝐵))) |
11 | 2, 3, 5, 7, 10 | dvelimdf 2028 | . . . 4 ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑤 ∈ 𝐵)) |
12 | 11 | imp 124 | . . 3 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑤 ∈ 𝐵) |
13 | 1, 12 | nfcd 2327 | . 2 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝐵) |
14 | 13 | ex 115 | 1 ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 = wceq 1364 Ⅎwnf 1471 ∈ wcel 2160 Ⅎwnfc 2319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-cleq 2182 df-clel 2185 df-nfc 2321 |
This theorem is referenced by: dvelimc 2354 |
Copyright terms: Public domain | W3C validator |