ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvelimdc GIF version

Theorem dvelimdc 2317
Description: Deduction form of dvelimc 2318. (Contributed by Mario Carneiro, 8-Oct-2016.)
Hypotheses
Ref Expression
dvelimdc.1 𝑥𝜑
dvelimdc.2 𝑧𝜑
dvelimdc.3 (𝜑𝑥𝐴)
dvelimdc.4 (𝜑𝑧𝐵)
dvelimdc.5 (𝜑 → (𝑧 = 𝑦𝐴 = 𝐵))
Assertion
Ref Expression
dvelimdc (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦𝑥𝐵))

Proof of Theorem dvelimdc
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfv 1505 . . 3 𝑤(𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦)
2 dvelimdc.1 . . . . 5 𝑥𝜑
3 dvelimdc.2 . . . . 5 𝑧𝜑
4 dvelimdc.3 . . . . . 6 (𝜑𝑥𝐴)
54nfcrd 2310 . . . . 5 (𝜑 → Ⅎ𝑥 𝑤𝐴)
6 dvelimdc.4 . . . . . 6 (𝜑𝑧𝐵)
76nfcrd 2310 . . . . 5 (𝜑 → Ⅎ𝑧 𝑤𝐵)
8 dvelimdc.5 . . . . . 6 (𝜑 → (𝑧 = 𝑦𝐴 = 𝐵))
9 eleq2 2218 . . . . . 6 (𝐴 = 𝐵 → (𝑤𝐴𝑤𝐵))
108, 9syl6 33 . . . . 5 (𝜑 → (𝑧 = 𝑦 → (𝑤𝐴𝑤𝐵)))
112, 3, 5, 7, 10dvelimdf 1993 . . . 4 (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑤𝐵))
1211imp 123 . . 3 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑤𝐵)
131, 12nfcd 2291 . 2 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → 𝑥𝐵)
1413ex 114 1 (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦𝑥𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wal 1330   = wceq 1332  wnf 1437  wcel 2125  wnfc 2283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-cleq 2147  df-clel 2150  df-nfc 2285
This theorem is referenced by:  dvelimc  2318
  Copyright terms: Public domain W3C validator