| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvelimdc | GIF version | ||
| Description: Deduction form of dvelimc 2371. (Contributed by Mario Carneiro, 8-Oct-2016.) |
| Ref | Expression |
|---|---|
| dvelimdc.1 | ⊢ Ⅎ𝑥𝜑 |
| dvelimdc.2 | ⊢ Ⅎ𝑧𝜑 |
| dvelimdc.3 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| dvelimdc.4 | ⊢ (𝜑 → Ⅎ𝑧𝐵) |
| dvelimdc.5 | ⊢ (𝜑 → (𝑧 = 𝑦 → 𝐴 = 𝐵)) |
| Ref | Expression |
|---|---|
| dvelimdc | ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 | . . 3 ⊢ Ⅎ𝑤(𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) | |
| 2 | dvelimdc.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
| 3 | dvelimdc.2 | . . . . 5 ⊢ Ⅎ𝑧𝜑 | |
| 4 | dvelimdc.3 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 5 | 4 | nfcrd 2363 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥 𝑤 ∈ 𝐴) |
| 6 | dvelimdc.4 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑧𝐵) | |
| 7 | 6 | nfcrd 2363 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑧 𝑤 ∈ 𝐵) |
| 8 | dvelimdc.5 | . . . . . 6 ⊢ (𝜑 → (𝑧 = 𝑦 → 𝐴 = 𝐵)) | |
| 9 | eleq2 2270 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝑤 ∈ 𝐴 ↔ 𝑤 ∈ 𝐵)) | |
| 10 | 8, 9 | syl6 33 | . . . . 5 ⊢ (𝜑 → (𝑧 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑤 ∈ 𝐵))) |
| 11 | 2, 3, 5, 7, 10 | dvelimdf 2045 | . . . 4 ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑤 ∈ 𝐵)) |
| 12 | 11 | imp 124 | . . 3 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑤 ∈ 𝐵) |
| 13 | 1, 12 | nfcd 2344 | . 2 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝐵) |
| 14 | 13 | ex 115 | 1 ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1371 = wceq 1373 Ⅎwnf 1484 ∈ wcel 2177 Ⅎwnfc 2336 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-cleq 2199 df-clel 2202 df-nfc 2338 |
| This theorem is referenced by: dvelimc 2371 |
| Copyright terms: Public domain | W3C validator |