![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvelimdc | GIF version |
Description: Deduction form of dvelimc 2351. (Contributed by Mario Carneiro, 8-Oct-2016.) |
Ref | Expression |
---|---|
dvelimdc.1 | ⊢ Ⅎ𝑥𝜑 |
dvelimdc.2 | ⊢ Ⅎ𝑧𝜑 |
dvelimdc.3 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
dvelimdc.4 | ⊢ (𝜑 → Ⅎ𝑧𝐵) |
dvelimdc.5 | ⊢ (𝜑 → (𝑧 = 𝑦 → 𝐴 = 𝐵)) |
Ref | Expression |
---|---|
dvelimdc | ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1538 | . . 3 ⊢ Ⅎ𝑤(𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) | |
2 | dvelimdc.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
3 | dvelimdc.2 | . . . . 5 ⊢ Ⅎ𝑧𝜑 | |
4 | dvelimdc.3 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
5 | 4 | nfcrd 2343 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥 𝑤 ∈ 𝐴) |
6 | dvelimdc.4 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑧𝐵) | |
7 | 6 | nfcrd 2343 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑧 𝑤 ∈ 𝐵) |
8 | dvelimdc.5 | . . . . . 6 ⊢ (𝜑 → (𝑧 = 𝑦 → 𝐴 = 𝐵)) | |
9 | eleq2 2251 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝑤 ∈ 𝐴 ↔ 𝑤 ∈ 𝐵)) | |
10 | 8, 9 | syl6 33 | . . . . 5 ⊢ (𝜑 → (𝑧 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑤 ∈ 𝐵))) |
11 | 2, 3, 5, 7, 10 | dvelimdf 2026 | . . . 4 ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑤 ∈ 𝐵)) |
12 | 11 | imp 124 | . . 3 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑤 ∈ 𝐵) |
13 | 1, 12 | nfcd 2324 | . 2 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝐵) |
14 | 13 | ex 115 | 1 ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1361 = wceq 1363 Ⅎwnf 1470 ∈ wcel 2158 Ⅎwnfc 2316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-cleq 2180 df-clel 2183 df-nfc 2318 |
This theorem is referenced by: dvelimc 2351 |
Copyright terms: Public domain | W3C validator |