| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvelimdc | GIF version | ||
| Description: Deduction form of dvelimc 2361. (Contributed by Mario Carneiro, 8-Oct-2016.) |
| Ref | Expression |
|---|---|
| dvelimdc.1 | ⊢ Ⅎ𝑥𝜑 |
| dvelimdc.2 | ⊢ Ⅎ𝑧𝜑 |
| dvelimdc.3 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| dvelimdc.4 | ⊢ (𝜑 → Ⅎ𝑧𝐵) |
| dvelimdc.5 | ⊢ (𝜑 → (𝑧 = 𝑦 → 𝐴 = 𝐵)) |
| Ref | Expression |
|---|---|
| dvelimdc | ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 | . . 3 ⊢ Ⅎ𝑤(𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) | |
| 2 | dvelimdc.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
| 3 | dvelimdc.2 | . . . . 5 ⊢ Ⅎ𝑧𝜑 | |
| 4 | dvelimdc.3 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 5 | 4 | nfcrd 2353 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥 𝑤 ∈ 𝐴) |
| 6 | dvelimdc.4 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑧𝐵) | |
| 7 | 6 | nfcrd 2353 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑧 𝑤 ∈ 𝐵) |
| 8 | dvelimdc.5 | . . . . . 6 ⊢ (𝜑 → (𝑧 = 𝑦 → 𝐴 = 𝐵)) | |
| 9 | eleq2 2260 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝑤 ∈ 𝐴 ↔ 𝑤 ∈ 𝐵)) | |
| 10 | 8, 9 | syl6 33 | . . . . 5 ⊢ (𝜑 → (𝑧 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑤 ∈ 𝐵))) |
| 11 | 2, 3, 5, 7, 10 | dvelimdf 2035 | . . . 4 ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑤 ∈ 𝐵)) |
| 12 | 11 | imp 124 | . . 3 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑤 ∈ 𝐵) |
| 13 | 1, 12 | nfcd 2334 | . 2 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝐵) |
| 14 | 13 | ex 115 | 1 ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 = wceq 1364 Ⅎwnf 1474 ∈ wcel 2167 Ⅎwnfc 2326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 |
| This theorem is referenced by: dvelimc 2361 |
| Copyright terms: Public domain | W3C validator |