ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeqd GIF version

Theorem nfeqd 2327
Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfeqd.1 (𝜑𝑥𝐴)
nfeqd.2 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfeqd (𝜑 → Ⅎ𝑥 𝐴 = 𝐵)

Proof of Theorem nfeqd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2164 . 2 (𝐴 = 𝐵 ↔ ∀𝑦(𝑦𝐴𝑦𝐵))
2 nfv 1521 . . 3 𝑦𝜑
3 nfeqd.1 . . . . 5 (𝜑𝑥𝐴)
43nfcrd 2326 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝐴)
5 nfeqd.2 . . . . 5 (𝜑𝑥𝐵)
65nfcrd 2326 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝐵)
74, 6nfbid 1581 . . 3 (𝜑 → Ⅎ𝑥(𝑦𝐴𝑦𝐵))
82, 7nfald 1753 . 2 (𝜑 → Ⅎ𝑥𝑦(𝑦𝐴𝑦𝐵))
91, 8nfxfrd 1468 1 (𝜑 → Ⅎ𝑥 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1346   = wceq 1348  wnf 1453  wcel 2141  wnfc 2299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-4 1503  ax-17 1519  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-cleq 2163  df-nfc 2301
This theorem is referenced by:  nfeld  2328  nfned  2434  vtoclgft  2780  sbcralt  3031  sbcrext  3032  csbiebt  3088  dfnfc2  3814  eusvnfb  4439  eusv2i  4440  iota2df  5184  riota5f  5833
  Copyright terms: Public domain W3C validator