![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfeqd | GIF version |
Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfeqd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfeqd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
nfeqd | ⊢ (𝜑 → Ⅎ𝑥 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2083 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) | |
2 | nfv 1467 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | nfeqd.1 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
4 | 3 | nfcrd 2243 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
5 | nfeqd.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
6 | 5 | nfcrd 2243 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐵) |
7 | 4, 6 | nfbid 1526 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
8 | 2, 7 | nfald 1691 | . 2 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
9 | 1, 8 | nfxfrd 1410 | 1 ⊢ (𝜑 → Ⅎ𝑥 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1288 = wceq 1290 Ⅎwnf 1395 ∈ wcel 1439 Ⅎwnfc 2216 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-7 1383 ax-gen 1384 ax-4 1446 ax-17 1465 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-nf 1396 df-cleq 2082 df-nfc 2218 |
This theorem is referenced by: nfeld 2245 nfned 2350 vtoclgft 2670 sbcralt 2916 sbcrext 2917 csbiebt 2968 dfnfc2 3677 eusvnfb 4289 eusv2i 4290 iota2df 5017 riota5f 5646 |
Copyright terms: Public domain | W3C validator |