| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfeqd | GIF version | ||
| Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeqd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfeqd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
| Ref | Expression |
|---|---|
| nfeqd | ⊢ (𝜑 → Ⅎ𝑥 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2190 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) | |
| 2 | nfv 1542 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfeqd.1 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 4 | 3 | nfcrd 2353 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
| 5 | nfeqd.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 6 | 5 | nfcrd 2353 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐵) |
| 7 | 4, 6 | nfbid 1602 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
| 8 | 2, 7 | nfald 1774 | . 2 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
| 9 | 1, 8 | nfxfrd 1489 | 1 ⊢ (𝜑 → Ⅎ𝑥 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 = wceq 1364 Ⅎwnf 1474 ∈ wcel 2167 Ⅎwnfc 2326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-cleq 2189 df-nfc 2328 |
| This theorem is referenced by: nfeld 2355 nfned 2461 vtoclgft 2814 sbcralt 3066 sbcrext 3067 csbiebt 3124 dfnfc2 3857 eusvnfb 4489 eusv2i 4490 iota2df 5244 riota5f 5902 |
| Copyright terms: Public domain | W3C validator |