| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfeqd | GIF version | ||
| Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeqd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfeqd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
| Ref | Expression |
|---|---|
| nfeqd | ⊢ (𝜑 → Ⅎ𝑥 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2223 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) | |
| 2 | nfv 1574 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfeqd.1 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 4 | 3 | nfcrd 2386 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
| 5 | nfeqd.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 6 | 5 | nfcrd 2386 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐵) |
| 7 | 4, 6 | nfbid 1634 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
| 8 | 2, 7 | nfald 1806 | . 2 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
| 9 | 1, 8 | nfxfrd 1521 | 1 ⊢ (𝜑 → Ⅎ𝑥 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1393 = wceq 1395 Ⅎwnf 1506 ∈ wcel 2200 Ⅎwnfc 2359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-cleq 2222 df-nfc 2361 |
| This theorem is referenced by: nfeld 2388 nfned 2494 vtoclgft 2851 sbcralt 3105 sbcrext 3106 csbiebt 3164 dfnfc2 3905 eusvnfb 4544 eusv2i 4545 iota2df 5303 riotaeqimp 5978 riota5f 5980 |
| Copyright terms: Public domain | W3C validator |