ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeqd GIF version

Theorem nfeqd 2323
Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfeqd.1 (𝜑𝑥𝐴)
nfeqd.2 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfeqd (𝜑 → Ⅎ𝑥 𝐴 = 𝐵)

Proof of Theorem nfeqd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2159 . 2 (𝐴 = 𝐵 ↔ ∀𝑦(𝑦𝐴𝑦𝐵))
2 nfv 1516 . . 3 𝑦𝜑
3 nfeqd.1 . . . . 5 (𝜑𝑥𝐴)
43nfcrd 2322 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝐴)
5 nfeqd.2 . . . . 5 (𝜑𝑥𝐵)
65nfcrd 2322 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝐵)
74, 6nfbid 1576 . . 3 (𝜑 → Ⅎ𝑥(𝑦𝐴𝑦𝐵))
82, 7nfald 1748 . 2 (𝜑 → Ⅎ𝑥𝑦(𝑦𝐴𝑦𝐵))
91, 8nfxfrd 1463 1 (𝜑 → Ⅎ𝑥 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1341   = wceq 1343  wnf 1448  wcel 2136  wnfc 2295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-4 1498  ax-17 1514  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-cleq 2158  df-nfc 2297
This theorem is referenced by:  nfeld  2324  nfned  2430  vtoclgft  2776  sbcralt  3027  sbcrext  3028  csbiebt  3084  dfnfc2  3807  eusvnfb  4432  eusv2i  4433  iota2df  5177  riota5f  5822
  Copyright terms: Public domain W3C validator