| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfcsbd | GIF version | ||
| Description: Deduction version of nfcsb 3131. (Contributed by NM, 21-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfcsbd.1 | ⊢ Ⅎ𝑦𝜑 |
| nfcsbd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfcsbd.3 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
| Ref | Expression |
|---|---|
| nfcsbd | ⊢ (𝜑 → Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb 3094 | . 2 ⊢ ⦋𝐴 / 𝑦⦌𝐵 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐵} | |
| 2 | nfv 1551 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
| 3 | nfcsbd.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 4 | nfcsbd.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 5 | nfcsbd.3 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 6 | 5 | nfcrd 2362 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑧 ∈ 𝐵) |
| 7 | 3, 4, 6 | nfsbcd 3018 | . . 3 ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝑧 ∈ 𝐵) |
| 8 | 2, 7 | nfabd 2368 | . 2 ⊢ (𝜑 → Ⅎ𝑥{𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐵}) |
| 9 | 1, 8 | nfcxfrd 2346 | 1 ⊢ (𝜑 → Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Ⅎwnf 1483 ∈ wcel 2176 {cab 2191 Ⅎwnfc 2335 [wsbc 2998 ⦋csb 3093 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-sbc 2999 df-csb 3094 |
| This theorem is referenced by: nfcsb 3131 |
| Copyright terms: Public domain | W3C validator |