ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcsbd GIF version

Theorem nfcsbd 2986
Description: Deduction version of nfcsb 2987. (Contributed by NM, 21-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
nfcsbd.1 𝑦𝜑
nfcsbd.2 (𝜑𝑥𝐴)
nfcsbd.3 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfcsbd (𝜑𝑥𝐴 / 𝑦𝐵)

Proof of Theorem nfcsbd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-csb 2956 . 2 𝐴 / 𝑦𝐵 = {𝑧[𝐴 / 𝑦]𝑧𝐵}
2 nfv 1476 . . 3 𝑧𝜑
3 nfcsbd.1 . . . 4 𝑦𝜑
4 nfcsbd.2 . . . 4 (𝜑𝑥𝐴)
5 nfcsbd.3 . . . . 5 (𝜑𝑥𝐵)
65nfcrd 2254 . . . 4 (𝜑 → Ⅎ𝑥 𝑧𝐵)
73, 4, 6nfsbcd 2881 . . 3 (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝑧𝐵)
82, 7nfabd 2259 . 2 (𝜑𝑥{𝑧[𝐴 / 𝑦]𝑧𝐵})
91, 8nfcxfrd 2238 1 (𝜑𝑥𝐴 / 𝑦𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wnf 1404  wcel 1448  {cab 2086  wnfc 2227  [wsbc 2862  csb 2955
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-sbc 2863  df-csb 2956
This theorem is referenced by:  nfcsb  2987
  Copyright terms: Public domain W3C validator