ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcsbd GIF version

Theorem nfcsbd 3137
Description: Deduction version of nfcsb 3139. (Contributed by NM, 21-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
nfcsbd.1 𝑦𝜑
nfcsbd.2 (𝜑𝑥𝐴)
nfcsbd.3 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfcsbd (𝜑𝑥𝐴 / 𝑦𝐵)

Proof of Theorem nfcsbd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3102 . 2 𝐴 / 𝑦𝐵 = {𝑧[𝐴 / 𝑦]𝑧𝐵}
2 nfv 1552 . . 3 𝑧𝜑
3 nfcsbd.1 . . . 4 𝑦𝜑
4 nfcsbd.2 . . . 4 (𝜑𝑥𝐴)
5 nfcsbd.3 . . . . 5 (𝜑𝑥𝐵)
65nfcrd 2364 . . . 4 (𝜑 → Ⅎ𝑥 𝑧𝐵)
73, 4, 6nfsbcd 3025 . . 3 (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝑧𝐵)
82, 7nfabd 2370 . 2 (𝜑𝑥{𝑧[𝐴 / 𝑦]𝑧𝐵})
91, 8nfcxfrd 2348 1 (𝜑𝑥𝐴 / 𝑦𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wnf 1484  wcel 2178  {cab 2193  wnfc 2337  [wsbc 3005  csb 3101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-sbc 3006  df-csb 3102
This theorem is referenced by:  nfcsb  3139
  Copyright terms: Public domain W3C validator