| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfcsbd | GIF version | ||
| Description: Deduction version of nfcsb 3139. (Contributed by NM, 21-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfcsbd.1 | ⊢ Ⅎ𝑦𝜑 |
| nfcsbd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfcsbd.3 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
| Ref | Expression |
|---|---|
| nfcsbd | ⊢ (𝜑 → Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb 3102 | . 2 ⊢ ⦋𝐴 / 𝑦⦌𝐵 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐵} | |
| 2 | nfv 1552 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
| 3 | nfcsbd.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 4 | nfcsbd.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 5 | nfcsbd.3 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 6 | 5 | nfcrd 2364 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑧 ∈ 𝐵) |
| 7 | 3, 4, 6 | nfsbcd 3025 | . . 3 ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝑧 ∈ 𝐵) |
| 8 | 2, 7 | nfabd 2370 | . 2 ⊢ (𝜑 → Ⅎ𝑥{𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐵}) |
| 9 | 1, 8 | nfcxfrd 2348 | 1 ⊢ (𝜑 → Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Ⅎwnf 1484 ∈ wcel 2178 {cab 2193 Ⅎwnfc 2337 [wsbc 3005 ⦋csb 3101 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-sbc 3006 df-csb 3102 |
| This theorem is referenced by: nfcsb 3139 |
| Copyright terms: Public domain | W3C validator |