| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfnfc | GIF version | ||
| Description: Hypothesis builder for Ⅎ𝑦𝐴. (Contributed by Mario Carneiro, 11-Aug-2016.) | 
| Ref | Expression | 
|---|---|
| nfnfc.1 | ⊢ Ⅎ𝑥𝐴 | 
| Ref | Expression | 
|---|---|
| nfnfc | ⊢ Ⅎ𝑥Ⅎ𝑦𝐴 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-nfc 2328 | . 2 ⊢ (Ⅎ𝑦𝐴 ↔ ∀𝑧Ⅎ𝑦 𝑧 ∈ 𝐴) | |
| 2 | nfnfc.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2333 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐴 | 
| 4 | 3 | nfnf 1591 | . . 3 ⊢ Ⅎ𝑥Ⅎ𝑦 𝑧 ∈ 𝐴 | 
| 5 | 4 | nfal 1590 | . 2 ⊢ Ⅎ𝑥∀𝑧Ⅎ𝑦 𝑧 ∈ 𝐴 | 
| 6 | 1, 5 | nfxfr 1488 | 1 ⊢ Ⅎ𝑥Ⅎ𝑦𝐴 | 
| Colors of variables: wff set class | 
| Syntax hints: ∀wal 1362 Ⅎwnf 1474 ∈ wcel 2167 Ⅎwnfc 2326 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |