Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfnfc | GIF version |
Description: Hypothesis builder for Ⅎ𝑦𝐴. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfnfc.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfnfc | ⊢ Ⅎ𝑥Ⅎ𝑦𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nfc 2301 | . 2 ⊢ (Ⅎ𝑦𝐴 ↔ ∀𝑧Ⅎ𝑦 𝑧 ∈ 𝐴) | |
2 | nfnfc.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2306 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐴 |
4 | 3 | nfnf 1570 | . . 3 ⊢ Ⅎ𝑥Ⅎ𝑦 𝑧 ∈ 𝐴 |
5 | 4 | nfal 1569 | . 2 ⊢ Ⅎ𝑥∀𝑧Ⅎ𝑦 𝑧 ∈ 𝐴 |
6 | 1, 5 | nfxfr 1467 | 1 ⊢ Ⅎ𝑥Ⅎ𝑦𝐴 |
Colors of variables: wff set class |
Syntax hints: ∀wal 1346 Ⅎwnf 1453 ∈ wcel 2141 Ⅎwnfc 2299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-cleq 2163 df-clel 2166 df-nfc 2301 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |