ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnfc GIF version

Theorem nfnfc 2326
Description: Hypothesis builder for 𝑦𝐴. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfnfc.1 𝑥𝐴
Assertion
Ref Expression
nfnfc 𝑥𝑦𝐴

Proof of Theorem nfnfc
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-nfc 2308 . 2 (𝑦𝐴 ↔ ∀𝑧𝑦 𝑧𝐴)
2 nfnfc.1 . . . . 5 𝑥𝐴
32nfcri 2313 . . . 4 𝑥 𝑧𝐴
43nfnf 1577 . . 3 𝑥𝑦 𝑧𝐴
54nfal 1576 . 2 𝑥𝑧𝑦 𝑧𝐴
61, 5nfxfr 1474 1 𝑥𝑦𝐴
Colors of variables: wff set class
Syntax hints:  wal 1351  wnf 1460  wcel 2148  wnfc 2306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-cleq 2170  df-clel 2173  df-nfc 2308
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator