ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnfc GIF version

Theorem nfnfc 2343
Description: Hypothesis builder for 𝑦𝐴. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfnfc.1 𝑥𝐴
Assertion
Ref Expression
nfnfc 𝑥𝑦𝐴

Proof of Theorem nfnfc
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-nfc 2325 . 2 (𝑦𝐴 ↔ ∀𝑧𝑦 𝑧𝐴)
2 nfnfc.1 . . . . 5 𝑥𝐴
32nfcri 2330 . . . 4 𝑥 𝑧𝐴
43nfnf 1588 . . 3 𝑥𝑦 𝑧𝐴
54nfal 1587 . 2 𝑥𝑧𝑦 𝑧𝐴
61, 5nfxfr 1485 1 𝑥𝑦𝐴
Colors of variables: wff set class
Syntax hints:  wal 1362  wnf 1471  wcel 2164  wnfc 2323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-cleq 2186  df-clel 2189  df-nfc 2325
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator