![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfnfc | GIF version |
Description: Hypothesis builder for Ⅎ𝑦𝐴. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfnfc.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfnfc | ⊢ Ⅎ𝑥Ⅎ𝑦𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nfc 2308 | . 2 ⊢ (Ⅎ𝑦𝐴 ↔ ∀𝑧Ⅎ𝑦 𝑧 ∈ 𝐴) | |
2 | nfnfc.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2313 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐴 |
4 | 3 | nfnf 1577 | . . 3 ⊢ Ⅎ𝑥Ⅎ𝑦 𝑧 ∈ 𝐴 |
5 | 4 | nfal 1576 | . 2 ⊢ Ⅎ𝑥∀𝑧Ⅎ𝑦 𝑧 ∈ 𝐴 |
6 | 1, 5 | nfxfr 1474 | 1 ⊢ Ⅎ𝑥Ⅎ𝑦𝐴 |
Colors of variables: wff set class |
Syntax hints: ∀wal 1351 Ⅎwnf 1460 ∈ wcel 2148 Ⅎwnfc 2306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-cleq 2170 df-clel 2173 df-nfc 2308 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |