Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfxfr | GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
nfxfr.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
nfxfr | ⊢ Ⅎ𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfxfr.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | nfbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | nfbii 1466 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
4 | 1, 3 | mpbir 145 | 1 ⊢ Ⅎ𝑥𝜑 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 Ⅎwnf 1453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 |
This theorem depends on definitions: df-bi 116 df-nf 1454 |
This theorem is referenced by: nfnf1 1537 nf3an 1559 nfnf 1570 nfdc 1652 nfs1f 1773 nfsbv 1940 nfeu1 2030 nfmo1 2031 sb8eu 2032 nfeu 2038 nfnfc1 2315 nfnfc 2319 nfeq 2320 nfel 2321 nfabdw 2331 nfne 2433 nfnel 2442 nfra1 2501 nfre1 2513 nfreu1 2641 nfrmo1 2642 nfss 3140 rabn0m 3442 nfdisjv 3978 nfdisj1 3979 nfpo 4286 nfso 4287 nfse 4326 nffrfor 4333 nffr 4334 nfwe 4340 nfrel 4696 sb8iota 5167 nffun 5221 nffn 5294 nff 5344 nff1 5401 nffo 5419 nff1o 5440 nfiso 5785 nfixpxy 6695 |
Copyright terms: Public domain | W3C validator |