| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfxfr | GIF version | ||
| Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| nfxfr.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| nfxfr | ⊢ Ⅎ𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfxfr.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | nfbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | nfbii 1496 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
| 4 | 1, 3 | mpbir 146 | 1 ⊢ Ⅎ𝑥𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 Ⅎwnf 1483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 |
| This theorem is referenced by: nfnf1 1567 nf3an 1589 nfnf 1600 nfdc 1682 nfs1f 1803 nfsbv 1975 nfeu1 2065 nfmo1 2066 sb8eu 2067 nfeu 2073 nfnfc1 2351 nfnfc 2355 nfeq 2356 nfel 2357 nfabdw 2367 nfne 2469 nfnel 2478 nfra1 2537 nfre1 2549 nfreu1 2678 nfrmo1 2679 nfss 3186 rabn0m 3488 nfdisjv 4033 nfdisj1 4034 nfpo 4348 nfso 4349 nfse 4388 nffrfor 4395 nffr 4396 nfwe 4402 nfrel 4760 sb8iota 5239 nffun 5294 nffn 5370 nff 5422 nff1 5479 nffo 5497 nff1o 5520 nfiso 5875 nfixpxy 6804 |
| Copyright terms: Public domain | W3C validator |