| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfxfr | GIF version | ||
| Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| nfxfr.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| nfxfr | ⊢ Ⅎ𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfxfr.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | nfbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | nfbii 1519 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
| 4 | 1, 3 | mpbir 146 | 1 ⊢ Ⅎ𝑥𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 Ⅎwnf 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 |
| This theorem is referenced by: nfnf1 1590 nf3an 1612 nfnf 1623 nfdc 1705 nfs1f 1826 nfsbv 1998 nfeu1 2088 nfmo1 2089 sb8eu 2090 nfeu 2096 nfnfc1 2375 nfnfc 2379 nfeq 2380 nfel 2381 nfabdw 2391 nfne 2493 nfnel 2502 nfra1 2561 nfre1 2573 nfreu1 2703 nfrmo1 2704 nfss 3217 rabn0m 3519 nfdisjv 4071 nfdisj1 4072 nfpo 4392 nfso 4393 nfse 4432 nffrfor 4439 nffr 4440 nfwe 4446 nfrel 4804 sb8iota 5286 nffun 5341 nffn 5417 nff 5470 nff1 5529 nffo 5547 nff1o 5570 nfiso 5930 nfixpxy 6864 |
| Copyright terms: Public domain | W3C validator |