ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfxfr GIF version

Theorem nfxfr 1418
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfbii.1 (𝜑𝜓)
nfxfr.2 𝑥𝜓
Assertion
Ref Expression
nfxfr 𝑥𝜑

Proof of Theorem nfxfr
StepHypRef Expression
1 nfxfr.2 . 2 𝑥𝜓
2 nfbii.1 . . 3 (𝜑𝜓)
32nfbii 1417 . 2 (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓)
41, 3mpbir 145 1 𝑥𝜑
Colors of variables: wff set class
Syntax hints:  wb 104  wnf 1404
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1391  ax-gen 1393
This theorem depends on definitions:  df-bi 116  df-nf 1405
This theorem is referenced by:  nfnf1  1491  nf3an  1513  nfnf  1524  nfdc  1605  nfs1f  1721  nfeu1  1971  nfmo1  1972  sb8eu  1973  nfeu  1979  nfnfc1  2243  nfnfc  2247  nfeq  2248  nfel  2249  nfne  2360  nfnel  2369  nfra1  2425  nfre1  2435  nfreu1  2560  nfrmo1  2561  nfss  3040  rabn0m  3337  nfdisjv  3864  nfdisj1  3865  nfpo  4161  nfso  4162  nfse  4201  nffrfor  4208  nffr  4209  nfwe  4215  nfrel  4562  sb8iota  5031  nffun  5082  nffn  5155  nff  5205  nff1  5262  nffo  5280  nff1o  5299  nfiso  5639  nfixpxy  6541
  Copyright terms: Public domain W3C validator