![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfxfr | GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
nfxfr.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
nfxfr | ⊢ Ⅎ𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfxfr.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | nfbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | nfbii 1417 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
4 | 1, 3 | mpbir 145 | 1 ⊢ Ⅎ𝑥𝜑 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 Ⅎwnf 1404 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1391 ax-gen 1393 |
This theorem depends on definitions: df-bi 116 df-nf 1405 |
This theorem is referenced by: nfnf1 1491 nf3an 1513 nfnf 1524 nfdc 1605 nfs1f 1721 nfeu1 1971 nfmo1 1972 sb8eu 1973 nfeu 1979 nfnfc1 2243 nfnfc 2247 nfeq 2248 nfel 2249 nfne 2360 nfnel 2369 nfra1 2425 nfre1 2435 nfreu1 2560 nfrmo1 2561 nfss 3040 rabn0m 3337 nfdisjv 3864 nfdisj1 3865 nfpo 4161 nfso 4162 nfse 4201 nffrfor 4208 nffr 4209 nfwe 4215 nfrel 4562 sb8iota 5031 nffun 5082 nffn 5155 nff 5205 nff1 5262 nffo 5280 nff1o 5299 nfiso 5639 nfixpxy 6541 |
Copyright terms: Public domain | W3C validator |