ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfxfr GIF version

Theorem nfxfr 1488
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfbii.1 (𝜑𝜓)
nfxfr.2 𝑥𝜓
Assertion
Ref Expression
nfxfr 𝑥𝜑

Proof of Theorem nfxfr
StepHypRef Expression
1 nfxfr.2 . 2 𝑥𝜓
2 nfbii.1 . . 3 (𝜑𝜓)
32nfbii 1487 . 2 (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓)
41, 3mpbir 146 1 𝑥𝜑
Colors of variables: wff set class
Syntax hints:  wb 105  wnf 1474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463
This theorem depends on definitions:  df-bi 117  df-nf 1475
This theorem is referenced by:  nfnf1  1558  nf3an  1580  nfnf  1591  nfdc  1673  nfs1f  1794  nfsbv  1966  nfeu1  2056  nfmo1  2057  sb8eu  2058  nfeu  2064  nfnfc1  2342  nfnfc  2346  nfeq  2347  nfel  2348  nfabdw  2358  nfne  2460  nfnel  2469  nfra1  2528  nfre1  2540  nfreu1  2669  nfrmo1  2670  nfss  3177  rabn0m  3479  nfdisjv  4023  nfdisj1  4024  nfpo  4337  nfso  4338  nfse  4377  nffrfor  4384  nffr  4385  nfwe  4391  nfrel  4749  sb8iota  5227  nffun  5282  nffn  5355  nff  5407  nff1  5464  nffo  5482  nff1o  5505  nfiso  5856  nfixpxy  6785
  Copyright terms: Public domain W3C validator