Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfnf1 | GIF version |
Description: 𝑥 is not free in Ⅎ𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfnf1 | ⊢ Ⅎ𝑥Ⅎ𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1454 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
2 | nfa1 1534 | . 2 ⊢ Ⅎ𝑥∀𝑥(𝜑 → ∀𝑥𝜑) | |
3 | 1, 2 | nfxfr 1467 | 1 ⊢ Ⅎ𝑥Ⅎ𝑥𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 Ⅎwnf 1453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-nf 1454 |
This theorem is referenced by: nfimd 1578 nfnt 1649 nfald 1753 equs5or 1823 sbcomxyyz 1965 nfsb4t 2007 nfnfc1 2315 nfabdw 2331 sbcnestgf 3100 dfnfc2 3814 bdsepnft 13922 setindft 14000 strcollnft 14019 |
Copyright terms: Public domain | W3C validator |