ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnf1 GIF version

Theorem nfnf1 1567
Description: 𝑥 is not free in 𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfnf1 𝑥𝑥𝜑

Proof of Theorem nfnf1
StepHypRef Expression
1 df-nf 1484 . 2 (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
2 nfa1 1564 . 2 𝑥𝑥(𝜑 → ∀𝑥𝜑)
31, 2nfxfr 1497 1 𝑥𝑥𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371  wnf 1483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ial 1557
This theorem depends on definitions:  df-bi 117  df-nf 1484
This theorem is referenced by:  nfimd  1608  nfnt  1679  nfald  1783  equs5or  1853  sbcomxyyz  2000  nfsb4t  2042  nfnfc1  2351  nfabdw  2367  sbcnestgf  3145  dfnfc2  3868  bdsepnft  15823  setindft  15901  strcollnft  15920
  Copyright terms: Public domain W3C validator