| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfnf1 | GIF version | ||
| Description: 𝑥 is not free in Ⅎ𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfnf1 | ⊢ Ⅎ𝑥Ⅎ𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nf 1484 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
| 2 | nfa1 1564 | . 2 ⊢ Ⅎ𝑥∀𝑥(𝜑 → ∀𝑥𝜑) | |
| 3 | 1, 2 | nfxfr 1497 | 1 ⊢ Ⅎ𝑥Ⅎ𝑥𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 Ⅎwnf 1483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 |
| This theorem is referenced by: nfimd 1608 nfnt 1679 nfald 1783 equs5or 1853 sbcomxyyz 2000 nfsb4t 2042 nfnfc1 2351 nfabdw 2367 sbcnestgf 3145 dfnfc2 3868 bdsepnft 15823 setindft 15901 strcollnft 15920 |
| Copyright terms: Public domain | W3C validator |