| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfnf1 | GIF version | ||
| Description: 𝑥 is not free in Ⅎ𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfnf1 | ⊢ Ⅎ𝑥Ⅎ𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nf 1475 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
| 2 | nfa1 1555 | . 2 ⊢ Ⅎ𝑥∀𝑥(𝜑 → ∀𝑥𝜑) | |
| 3 | 1, 2 | nfxfr 1488 | 1 ⊢ Ⅎ𝑥Ⅎ𝑥𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 Ⅎwnf 1474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: nfimd 1599 nfnt 1670 nfald 1774 equs5or 1844 sbcomxyyz 1991 nfsb4t 2033 nfnfc1 2342 nfabdw 2358 sbcnestgf 3136 dfnfc2 3857 bdsepnft 15533 setindft 15611 strcollnft 15630 |
| Copyright terms: Public domain | W3C validator |