ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnf1 GIF version

Theorem nfnf1 1568
Description: 𝑥 is not free in 𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfnf1 𝑥𝑥𝜑

Proof of Theorem nfnf1
StepHypRef Expression
1 df-nf 1485 . 2 (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
2 nfa1 1565 . 2 𝑥𝑥(𝜑 → ∀𝑥𝜑)
31, 2nfxfr 1498 1 𝑥𝑥𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371  wnf 1484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-nf 1485
This theorem is referenced by:  nfimd  1609  nfnt  1680  nfald  1784  equs5or  1854  sbcomxyyz  2001  nfsb4t  2043  nfnfc1  2353  nfabdw  2369  sbcnestgf  3153  dfnfc2  3882  bdsepnft  16022  setindft  16100  strcollnft  16119
  Copyright terms: Public domain W3C validator