| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfnf1 | GIF version | ||
| Description: 𝑥 is not free in Ⅎ𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfnf1 | ⊢ Ⅎ𝑥Ⅎ𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nf 1483 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
| 2 | nfa1 1563 | . 2 ⊢ Ⅎ𝑥∀𝑥(𝜑 → ∀𝑥𝜑) | |
| 3 | 1, 2 | nfxfr 1496 | 1 ⊢ Ⅎ𝑥Ⅎ𝑥𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1370 Ⅎwnf 1482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 |
| This theorem is referenced by: nfimd 1607 nfnt 1678 nfald 1782 equs5or 1852 sbcomxyyz 1999 nfsb4t 2041 nfnfc1 2350 nfabdw 2366 sbcnestgf 3144 dfnfc2 3867 bdsepnft 15785 setindft 15863 strcollnft 15882 |
| Copyright terms: Public domain | W3C validator |