| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfnf1 | GIF version | ||
| Description: 𝑥 is not free in Ⅎ𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfnf1 | ⊢ Ⅎ𝑥Ⅎ𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nf 1485 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
| 2 | nfa1 1565 | . 2 ⊢ Ⅎ𝑥∀𝑥(𝜑 → ∀𝑥𝜑) | |
| 3 | 1, 2 | nfxfr 1498 | 1 ⊢ Ⅎ𝑥Ⅎ𝑥𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 Ⅎwnf 1484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 |
| This theorem is referenced by: nfimd 1609 nfnt 1680 nfald 1784 equs5or 1854 sbcomxyyz 2001 nfsb4t 2043 nfnfc1 2353 nfabdw 2369 sbcnestgf 3153 dfnfc2 3882 bdsepnft 16022 setindft 16100 strcollnft 16119 |
| Copyright terms: Public domain | W3C validator |