![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfnf1 | GIF version |
Description: 𝑥 is not free in Ⅎ𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfnf1 | ⊢ Ⅎ𝑥Ⅎ𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1461 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
2 | nfa1 1541 | . 2 ⊢ Ⅎ𝑥∀𝑥(𝜑 → ∀𝑥𝜑) | |
3 | 1, 2 | nfxfr 1474 | 1 ⊢ Ⅎ𝑥Ⅎ𝑥𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1351 Ⅎwnf 1460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 df-nf 1461 |
This theorem is referenced by: nfimd 1585 nfnt 1656 nfald 1760 equs5or 1830 sbcomxyyz 1972 nfsb4t 2014 nfnfc1 2322 nfabdw 2338 sbcnestgf 3110 dfnfc2 3829 bdsepnft 14678 setindft 14756 strcollnft 14775 |
Copyright terms: Public domain | W3C validator |