ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnf1 GIF version

Theorem nfnf1 1488
Description: 𝑥 is not free in 𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfnf1 𝑥𝑥𝜑

Proof of Theorem nfnf1
StepHypRef Expression
1 df-nf 1402 . 2 (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
2 nfa1 1486 . 2 𝑥𝑥(𝜑 → ∀𝑥𝜑)
31, 2nfxfr 1415 1 𝑥𝑥𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1294  wnf 1401
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1388  ax-gen 1390  ax-ial 1479
This theorem depends on definitions:  df-bi 116  df-nf 1402
This theorem is referenced by:  nfimd  1529  nfnt  1598  nfald  1697  equs5or  1765  sbcomxyyz  1901  nfsb4t  1945  nfnfc1  2238  sbcnestgf  2993  dfnfc2  3693  bdsepnft  12486  setindft  12568  strcollnft  12587
  Copyright terms: Public domain W3C validator