![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfnf1 | GIF version |
Description: 𝑥 is not free in Ⅎ𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfnf1 | ⊢ Ⅎ𝑥Ⅎ𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1402 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
2 | nfa1 1486 | . 2 ⊢ Ⅎ𝑥∀𝑥(𝜑 → ∀𝑥𝜑) | |
3 | 1, 2 | nfxfr 1415 | 1 ⊢ Ⅎ𝑥Ⅎ𝑥𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1294 Ⅎwnf 1401 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1388 ax-gen 1390 ax-ial 1479 |
This theorem depends on definitions: df-bi 116 df-nf 1402 |
This theorem is referenced by: nfimd 1529 nfnt 1598 nfald 1697 equs5or 1765 sbcomxyyz 1901 nfsb4t 1945 nfnfc1 2238 sbcnestgf 2993 dfnfc2 3693 bdsepnft 12486 setindft 12568 strcollnft 12587 |
Copyright terms: Public domain | W3C validator |