ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnf1 GIF version

Theorem nfnf1 1537
Description: 𝑥 is not free in 𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfnf1 𝑥𝑥𝜑

Proof of Theorem nfnf1
StepHypRef Expression
1 df-nf 1454 . 2 (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
2 nfa1 1534 . 2 𝑥𝑥(𝜑 → ∀𝑥𝜑)
31, 2nfxfr 1467 1 𝑥𝑥𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1346  wnf 1453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-nf 1454
This theorem is referenced by:  nfimd  1578  nfnt  1649  nfald  1753  equs5or  1823  sbcomxyyz  1965  nfsb4t  2007  nfnfc1  2315  nfabdw  2331  sbcnestgf  3100  dfnfc2  3814  bdsepnft  13922  setindft  14000  strcollnft  14019
  Copyright terms: Public domain W3C validator