Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfreu1 | GIF version |
Description: 𝑥 is not free in ∃!𝑥 ∈ 𝐴𝜑. (Contributed by NM, 19-Mar-1997.) |
Ref | Expression |
---|---|
nfreu1 | ⊢ Ⅎ𝑥∃!𝑥 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu 2455 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | nfeu1 2030 | . 2 ⊢ Ⅎ𝑥∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) | |
3 | 1, 2 | nfxfr 1467 | 1 ⊢ Ⅎ𝑥∃!𝑥 ∈ 𝐴 𝜑 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 Ⅎwnf 1453 ∃!weu 2019 ∈ wcel 2141 ∃!wreu 2450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-eu 2022 df-reu 2455 |
This theorem is referenced by: riota2df 5829 |
Copyright terms: Public domain | W3C validator |