Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfreu1 | GIF version |
Description: 𝑥 is not free in ∃!𝑥 ∈ 𝐴𝜑. (Contributed by NM, 19-Mar-1997.) |
Ref | Expression |
---|---|
nfreu1 | ⊢ Ⅎ𝑥∃!𝑥 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu 2451 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | nfeu1 2025 | . 2 ⊢ Ⅎ𝑥∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) | |
3 | 1, 2 | nfxfr 1462 | 1 ⊢ Ⅎ𝑥∃!𝑥 ∈ 𝐴 𝜑 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 Ⅎwnf 1448 ∃!weu 2014 ∈ wcel 2136 ∃!wreu 2446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-eu 2017 df-reu 2451 |
This theorem is referenced by: riota2df 5818 |
Copyright terms: Public domain | W3C validator |