| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfreu1 | GIF version | ||
| Description: 𝑥 is not free in ∃!𝑥 ∈ 𝐴𝜑. (Contributed by NM, 19-Mar-1997.) |
| Ref | Expression |
|---|---|
| nfreu1 | ⊢ Ⅎ𝑥∃!𝑥 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-reu 2482 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | nfeu1 2056 | . 2 ⊢ Ⅎ𝑥∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) | |
| 3 | 1, 2 | nfxfr 1488 | 1 ⊢ Ⅎ𝑥∃!𝑥 ∈ 𝐴 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 Ⅎwnf 1474 ∃!weu 2045 ∈ wcel 2167 ∃!wreu 2477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-eu 2048 df-reu 2482 |
| This theorem is referenced by: riota2df 5898 |
| Copyright terms: Public domain | W3C validator |