ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfreu1 GIF version

Theorem nfreu1 2637
Description: 𝑥 is not free in ∃!𝑥𝐴𝜑. (Contributed by NM, 19-Mar-1997.)
Assertion
Ref Expression
nfreu1 𝑥∃!𝑥𝐴 𝜑

Proof of Theorem nfreu1
StepHypRef Expression
1 df-reu 2451 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
2 nfeu1 2025 . 2 𝑥∃!𝑥(𝑥𝐴𝜑)
31, 2nfxfr 1462 1 𝑥∃!𝑥𝐴 𝜑
Colors of variables: wff set class
Syntax hints:  wa 103  wnf 1448  ∃!weu 2014  wcel 2136  ∃!wreu 2446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-eu 2017  df-reu 2451
This theorem is referenced by:  riota2df  5818
  Copyright terms: Public domain W3C validator