ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfreudxy GIF version

Theorem nfreudxy 2682
Description: Not-free deduction for restricted uniqueness. This is a version where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 6-Jun-2018.)
Hypotheses
Ref Expression
nfreudxy.1 𝑦𝜑
nfreudxy.2 (𝜑𝑥𝐴)
nfreudxy.3 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfreudxy (𝜑 → Ⅎ𝑥∃!𝑦𝐴 𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfreudxy
StepHypRef Expression
1 nfreudxy.1 . . 3 𝑦𝜑
2 nfcv 2350 . . . . . 6 𝑥𝑦
32a1i 9 . . . . 5 (𝜑𝑥𝑦)
4 nfreudxy.2 . . . . 5 (𝜑𝑥𝐴)
53, 4nfeld 2366 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝐴)
6 nfreudxy.3 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
75, 6nfand 1592 . . 3 (𝜑 → Ⅎ𝑥(𝑦𝐴𝜓))
81, 7nfeud 2071 . 2 (𝜑 → Ⅎ𝑥∃!𝑦(𝑦𝐴𝜓))
9 df-reu 2493 . . 3 (∃!𝑦𝐴 𝜓 ↔ ∃!𝑦(𝑦𝐴𝜓))
109nfbii 1497 . 2 (Ⅎ𝑥∃!𝑦𝐴 𝜓 ↔ Ⅎ𝑥∃!𝑦(𝑦𝐴𝜓))
118, 10sylibr 134 1 (𝜑 → Ⅎ𝑥∃!𝑦𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wnf 1484  ∃!weu 2055  wcel 2178  wnfc 2337  ∃!wreu 2488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-cleq 2200  df-clel 2203  df-nfc 2339  df-reu 2493
This theorem is referenced by:  nfreuw  2683
  Copyright terms: Public domain W3C validator