ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fin0 GIF version

Theorem fin0 7035
Description: A nonempty finite set has at least one element. (Contributed by Jim Kingdon, 10-Sep-2021.)
Assertion
Ref Expression
fin0 (𝐴 ∈ Fin → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem fin0
Dummy variables 𝑓 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6902 . . 3 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 120 . 2 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
3 simplrr 536 . . . . . . 7 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴𝑛)
4 simpr 110 . . . . . . 7 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝑛 = ∅)
53, 4breqtrd 4108 . . . . . 6 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴 ≈ ∅)
6 en0 6937 . . . . . 6 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
75, 6sylib 122 . . . . 5 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴 = ∅)
8 nner 2404 . . . . 5 (𝐴 = ∅ → ¬ 𝐴 ≠ ∅)
97, 8syl 14 . . . 4 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → ¬ 𝐴 ≠ ∅)
10 n0r 3505 . . . . . 6 (∃𝑥 𝑥𝐴𝐴 ≠ ∅)
1110necon2bi 2455 . . . . 5 (𝐴 = ∅ → ¬ ∃𝑥 𝑥𝐴)
127, 11syl 14 . . . 4 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → ¬ ∃𝑥 𝑥𝐴)
139, 122falsed 707 . . 3 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
14 simplrr 536 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) → 𝐴𝑛)
1514adantr 276 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐴𝑛)
1615ensymd 6925 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝑛𝐴)
17 bren 6885 . . . . . . . 8 (𝑛𝐴 ↔ ∃𝑓 𝑓:𝑛1-1-onto𝐴)
1816, 17sylib 122 . . . . . . 7 ((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → ∃𝑓 𝑓:𝑛1-1-onto𝐴)
19 f1of 5568 . . . . . . . . . . . 12 (𝑓:𝑛1-1-onto𝐴𝑓:𝑛𝐴)
2019adantl 277 . . . . . . . . . . 11 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → 𝑓:𝑛𝐴)
21 sucidg 4504 . . . . . . . . . . . . 13 (𝑚 ∈ ω → 𝑚 ∈ suc 𝑚)
2221ad3antlr 493 . . . . . . . . . . . 12 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → 𝑚 ∈ suc 𝑚)
23 simplr 528 . . . . . . . . . . . 12 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → 𝑛 = suc 𝑚)
2422, 23eleqtrrd 2309 . . . . . . . . . . 11 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → 𝑚𝑛)
2520, 24ffvelcdmd 5764 . . . . . . . . . 10 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → (𝑓𝑚) ∈ 𝐴)
26 elex2 2816 . . . . . . . . . 10 ((𝑓𝑚) ∈ 𝐴 → ∃𝑥 𝑥𝐴)
2725, 26syl 14 . . . . . . . . 9 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → ∃𝑥 𝑥𝐴)
2827, 10syl 14 . . . . . . . 8 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → 𝐴 ≠ ∅)
2928, 272thd 175 . . . . . . 7 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
3018, 29exlimddv 1945 . . . . . 6 ((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
3130ex 115 . . . . 5 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) → (𝑛 = suc 𝑚 → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)))
3231rexlimdva 2648 . . . 4 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (∃𝑚 ∈ ω 𝑛 = suc 𝑚 → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)))
3332imp 124 . . 3 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ ∃𝑚 ∈ ω 𝑛 = suc 𝑚) → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
34 nn0suc 4693 . . . 4 (𝑛 ∈ ω → (𝑛 = ∅ ∨ ∃𝑚 ∈ ω 𝑛 = suc 𝑚))
3534ad2antrl 490 . . 3 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝑛 = ∅ ∨ ∃𝑚 ∈ ω 𝑛 = suc 𝑚))
3613, 33, 35mpjaodan 803 . 2 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
372, 36rexlimddv 2653 1 (𝐴 ∈ Fin → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wex 1538  wcel 2200  wne 2400  wrex 2509  c0 3491   class class class wbr 4082  suc csuc 4453  ωcom 4679  wf 5310  1-1-ontowf1o 5313  cfv 5314  cen 6875  Fincfn 6877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-id 4381  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-er 6670  df-en 6878  df-fin 6880
This theorem is referenced by:  findcard2  7039  findcard2s  7040  diffisn  7043  fimax2gtri  7051  elfi2  7127  elfir  7128  fiuni  7133  fifo  7135  4sqlem12  12911
  Copyright terms: Public domain W3C validator