ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fin0 GIF version

Theorem fin0 6943
Description: A nonempty finite set has at least one element. (Contributed by Jim Kingdon, 10-Sep-2021.)
Assertion
Ref Expression
fin0 (𝐴 ∈ Fin → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem fin0
Dummy variables 𝑓 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6817 . . 3 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 120 . 2 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
3 simplrr 536 . . . . . . 7 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴𝑛)
4 simpr 110 . . . . . . 7 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝑛 = ∅)
53, 4breqtrd 4056 . . . . . 6 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴 ≈ ∅)
6 en0 6851 . . . . . 6 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
75, 6sylib 122 . . . . 5 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴 = ∅)
8 nner 2368 . . . . 5 (𝐴 = ∅ → ¬ 𝐴 ≠ ∅)
97, 8syl 14 . . . 4 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → ¬ 𝐴 ≠ ∅)
10 n0r 3461 . . . . . 6 (∃𝑥 𝑥𝐴𝐴 ≠ ∅)
1110necon2bi 2419 . . . . 5 (𝐴 = ∅ → ¬ ∃𝑥 𝑥𝐴)
127, 11syl 14 . . . 4 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → ¬ ∃𝑥 𝑥𝐴)
139, 122falsed 703 . . 3 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
14 simplrr 536 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) → 𝐴𝑛)
1514adantr 276 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐴𝑛)
1615ensymd 6839 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝑛𝐴)
17 bren 6803 . . . . . . . 8 (𝑛𝐴 ↔ ∃𝑓 𝑓:𝑛1-1-onto𝐴)
1816, 17sylib 122 . . . . . . 7 ((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → ∃𝑓 𝑓:𝑛1-1-onto𝐴)
19 f1of 5501 . . . . . . . . . . . 12 (𝑓:𝑛1-1-onto𝐴𝑓:𝑛𝐴)
2019adantl 277 . . . . . . . . . . 11 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → 𝑓:𝑛𝐴)
21 sucidg 4448 . . . . . . . . . . . . 13 (𝑚 ∈ ω → 𝑚 ∈ suc 𝑚)
2221ad3antlr 493 . . . . . . . . . . . 12 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → 𝑚 ∈ suc 𝑚)
23 simplr 528 . . . . . . . . . . . 12 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → 𝑛 = suc 𝑚)
2422, 23eleqtrrd 2273 . . . . . . . . . . 11 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → 𝑚𝑛)
2520, 24ffvelcdmd 5695 . . . . . . . . . 10 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → (𝑓𝑚) ∈ 𝐴)
26 elex2 2776 . . . . . . . . . 10 ((𝑓𝑚) ∈ 𝐴 → ∃𝑥 𝑥𝐴)
2725, 26syl 14 . . . . . . . . 9 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → ∃𝑥 𝑥𝐴)
2827, 10syl 14 . . . . . . . 8 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → 𝐴 ≠ ∅)
2928, 272thd 175 . . . . . . 7 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
3018, 29exlimddv 1910 . . . . . 6 ((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
3130ex 115 . . . . 5 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) → (𝑛 = suc 𝑚 → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)))
3231rexlimdva 2611 . . . 4 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (∃𝑚 ∈ ω 𝑛 = suc 𝑚 → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)))
3332imp 124 . . 3 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ ∃𝑚 ∈ ω 𝑛 = suc 𝑚) → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
34 nn0suc 4637 . . . 4 (𝑛 ∈ ω → (𝑛 = ∅ ∨ ∃𝑚 ∈ ω 𝑛 = suc 𝑚))
3534ad2antrl 490 . . 3 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝑛 = ∅ ∨ ∃𝑚 ∈ ω 𝑛 = suc 𝑚))
3613, 33, 35mpjaodan 799 . 2 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
372, 36rexlimddv 2616 1 (𝐴 ∈ Fin → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wex 1503  wcel 2164  wne 2364  wrex 2473  c0 3447   class class class wbr 4030  suc csuc 4397  ωcom 4623  wf 5251  1-1-ontowf1o 5254  cfv 5255  cen 6794  Fincfn 6796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-id 4325  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-er 6589  df-en 6797  df-fin 6799
This theorem is referenced by:  findcard2  6947  findcard2s  6948  diffisn  6951  fimax2gtri  6959  elfi2  7033  elfir  7034  fiuni  7039  fifo  7041  4sqlem12  12543
  Copyright terms: Public domain W3C validator