ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fin0 GIF version

Theorem fin0 6851
Description: A nonempty finite set has at least one element. (Contributed by Jim Kingdon, 10-Sep-2021.)
Assertion
Ref Expression
fin0 (𝐴 ∈ Fin → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem fin0
Dummy variables 𝑓 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6727 . . 3 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 119 . 2 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
3 simplrr 526 . . . . . . 7 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴𝑛)
4 simpr 109 . . . . . . 7 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝑛 = ∅)
53, 4breqtrd 4008 . . . . . 6 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴 ≈ ∅)
6 en0 6761 . . . . . 6 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
75, 6sylib 121 . . . . 5 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴 = ∅)
8 nner 2340 . . . . 5 (𝐴 = ∅ → ¬ 𝐴 ≠ ∅)
97, 8syl 14 . . . 4 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → ¬ 𝐴 ≠ ∅)
10 n0r 3422 . . . . . 6 (∃𝑥 𝑥𝐴𝐴 ≠ ∅)
1110necon2bi 2391 . . . . 5 (𝐴 = ∅ → ¬ ∃𝑥 𝑥𝐴)
127, 11syl 14 . . . 4 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → ¬ ∃𝑥 𝑥𝐴)
139, 122falsed 692 . . 3 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
14 simplrr 526 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) → 𝐴𝑛)
1514adantr 274 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐴𝑛)
1615ensymd 6749 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝑛𝐴)
17 bren 6713 . . . . . . . 8 (𝑛𝐴 ↔ ∃𝑓 𝑓:𝑛1-1-onto𝐴)
1816, 17sylib 121 . . . . . . 7 ((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → ∃𝑓 𝑓:𝑛1-1-onto𝐴)
19 f1of 5432 . . . . . . . . . . . 12 (𝑓:𝑛1-1-onto𝐴𝑓:𝑛𝐴)
2019adantl 275 . . . . . . . . . . 11 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → 𝑓:𝑛𝐴)
21 sucidg 4394 . . . . . . . . . . . . 13 (𝑚 ∈ ω → 𝑚 ∈ suc 𝑚)
2221ad3antlr 485 . . . . . . . . . . . 12 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → 𝑚 ∈ suc 𝑚)
23 simplr 520 . . . . . . . . . . . 12 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → 𝑛 = suc 𝑚)
2422, 23eleqtrrd 2246 . . . . . . . . . . 11 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → 𝑚𝑛)
2520, 24ffvelrnd 5621 . . . . . . . . . 10 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → (𝑓𝑚) ∈ 𝐴)
26 elex2 2742 . . . . . . . . . 10 ((𝑓𝑚) ∈ 𝐴 → ∃𝑥 𝑥𝐴)
2725, 26syl 14 . . . . . . . . 9 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → ∃𝑥 𝑥𝐴)
2827, 10syl 14 . . . . . . . 8 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → 𝐴 ≠ ∅)
2928, 272thd 174 . . . . . . 7 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
3018, 29exlimddv 1886 . . . . . 6 ((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
3130ex 114 . . . . 5 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) → (𝑛 = suc 𝑚 → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)))
3231rexlimdva 2583 . . . 4 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (∃𝑚 ∈ ω 𝑛 = suc 𝑚 → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)))
3332imp 123 . . 3 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ ∃𝑚 ∈ ω 𝑛 = suc 𝑚) → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
34 nn0suc 4581 . . . 4 (𝑛 ∈ ω → (𝑛 = ∅ ∨ ∃𝑚 ∈ ω 𝑛 = suc 𝑚))
3534ad2antrl 482 . . 3 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝑛 = ∅ ∨ ∃𝑚 ∈ ω 𝑛 = suc 𝑚))
3613, 33, 35mpjaodan 788 . 2 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
372, 36rexlimddv 2588 1 (𝐴 ∈ Fin → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698   = wceq 1343  wex 1480  wcel 2136  wne 2336  wrex 2445  c0 3409   class class class wbr 3982  suc csuc 4343  ωcom 4567  wf 5184  1-1-ontowf1o 5187  cfv 5188  cen 6704  Fincfn 6706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-er 6501  df-en 6707  df-fin 6709
This theorem is referenced by:  findcard2  6855  findcard2s  6856  diffisn  6859  fimax2gtri  6867  elfi2  6937  elfir  6938  fiuni  6943  fifo  6945
  Copyright terms: Public domain W3C validator