| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > neir | GIF version | ||
| Description: Inference associated with df-ne 2368. (Contributed by BJ, 7-Jul-2018.) | 
| Ref | Expression | 
|---|---|
| neir.1 | ⊢ ¬ 𝐴 = 𝐵 | 
| Ref | Expression | 
|---|---|
| neir | ⊢ 𝐴 ≠ 𝐵 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | neir.1 | . 2 ⊢ ¬ 𝐴 = 𝐵 | |
| 2 | df-ne 2368 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 1, 2 | mpbir 146 | 1 ⊢ 𝐴 ≠ 𝐵 | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 = wceq 1364 ≠ wne 2367 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-ne 2368 | 
| This theorem is referenced by: exmidonfinlem 7260 pw1ne1 7296 pw1ne3 7297 sucpw1nel3 7300 ine0 8420 pwle2 15643 | 
| Copyright terms: Public domain | W3C validator |