ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neir GIF version

Theorem neir 2330
Description: Inference associated with df-ne 2328. (Contributed by BJ, 7-Jul-2018.)
Hypothesis
Ref Expression
neir.1 ¬ 𝐴 = 𝐵
Assertion
Ref Expression
neir 𝐴𝐵

Proof of Theorem neir
StepHypRef Expression
1 neir.1 . 2 ¬ 𝐴 = 𝐵
2 df-ne 2328 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
31, 2mpbir 145 1 𝐴𝐵
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1335  wne 2327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-ne 2328
This theorem is referenced by:  exmidonfinlem  7131  pw1ne1  7167  pw1ne3  7168  sucpw1nel3  7171  ine0  8274  pwle2  13667
  Copyright terms: Public domain W3C validator