Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0eln0 | GIF version |
Description: A natural number is nonempty iff it contains the empty set. Although in constructive mathematics it is generally more natural to work with inhabited sets and ignore the whole concept of nonempty sets, in the specific case of natural numbers this theorem may be helpful in converting proofs which were written assuming excluded middle. (Contributed by Jim Kingdon, 28-Aug-2019.) |
Ref | Expression |
---|---|
nn0eln0 | ⊢ (𝐴 ∈ ω → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elnn 4596 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) | |
2 | noel 3413 | . . . . 5 ⊢ ¬ ∅ ∈ ∅ | |
3 | eleq2 2230 | . . . . 5 ⊢ (𝐴 = ∅ → (∅ ∈ 𝐴 ↔ ∅ ∈ ∅)) | |
4 | 2, 3 | mtbiri 665 | . . . 4 ⊢ (𝐴 = ∅ → ¬ ∅ ∈ 𝐴) |
5 | nner 2340 | . . . 4 ⊢ (𝐴 = ∅ → ¬ 𝐴 ≠ ∅) | |
6 | 4, 5 | 2falsed 692 | . . 3 ⊢ (𝐴 = ∅ → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
7 | id 19 | . . . 4 ⊢ (∅ ∈ 𝐴 → ∅ ∈ 𝐴) | |
8 | ne0i 3415 | . . . 4 ⊢ (∅ ∈ 𝐴 → 𝐴 ≠ ∅) | |
9 | 7, 8 | 2thd 174 | . . 3 ⊢ (∅ ∈ 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
10 | 6, 9 | jaoi 706 | . 2 ⊢ ((𝐴 = ∅ ∨ ∅ ∈ 𝐴) → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
11 | 1, 10 | syl 14 | 1 ⊢ (𝐴 ∈ ω → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∨ wo 698 = wceq 1343 ∈ wcel 2136 ≠ wne 2336 ∅c0 3409 ωcom 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-suc 4349 df-iom 4568 |
This theorem is referenced by: nnmord 6485 bj-charfunr 13692 |
Copyright terms: Public domain | W3C validator |