![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0eln0 | GIF version |
Description: A natural number is nonempty iff it contains the empty set. Although in constructive mathematics it is generally more natural to work with inhabited sets and ignore the whole concept of nonempty sets, in the specific case of natural numbers this theorem may be helpful in converting proofs which were written assuming excluded middle. (Contributed by Jim Kingdon, 28-Aug-2019.) |
Ref | Expression |
---|---|
nn0eln0 | ⊢ (𝐴 ∈ ω → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elnn 4652 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) | |
2 | noel 3451 | . . . . 5 ⊢ ¬ ∅ ∈ ∅ | |
3 | eleq2 2257 | . . . . 5 ⊢ (𝐴 = ∅ → (∅ ∈ 𝐴 ↔ ∅ ∈ ∅)) | |
4 | 2, 3 | mtbiri 676 | . . . 4 ⊢ (𝐴 = ∅ → ¬ ∅ ∈ 𝐴) |
5 | nner 2368 | . . . 4 ⊢ (𝐴 = ∅ → ¬ 𝐴 ≠ ∅) | |
6 | 4, 5 | 2falsed 703 | . . 3 ⊢ (𝐴 = ∅ → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
7 | id 19 | . . . 4 ⊢ (∅ ∈ 𝐴 → ∅ ∈ 𝐴) | |
8 | ne0i 3454 | . . . 4 ⊢ (∅ ∈ 𝐴 → 𝐴 ≠ ∅) | |
9 | 7, 8 | 2thd 175 | . . 3 ⊢ (∅ ∈ 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
10 | 6, 9 | jaoi 717 | . 2 ⊢ ((𝐴 = ∅ ∨ ∅ ∈ 𝐴) → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
11 | 1, 10 | syl 14 | 1 ⊢ (𝐴 ∈ ω → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ∅c0 3447 ωcom 4623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-uni 3837 df-int 3872 df-suc 4403 df-iom 4624 |
This theorem is referenced by: nnmord 6572 bj-charfunr 15372 |
Copyright terms: Public domain | W3C validator |