| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0eln0 | GIF version | ||
| Description: A natural number is nonempty iff it contains the empty set. Although in constructive mathematics it is generally more natural to work with inhabited sets and ignore the whole concept of nonempty sets, in the specific case of natural numbers this theorem may be helpful in converting proofs which were written assuming excluded middle. (Contributed by Jim Kingdon, 28-Aug-2019.) |
| Ref | Expression |
|---|---|
| nn0eln0 | ⊢ (𝐴 ∈ ω → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elnn 4710 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) | |
| 2 | noel 3495 | . . . . 5 ⊢ ¬ ∅ ∈ ∅ | |
| 3 | eleq2 2293 | . . . . 5 ⊢ (𝐴 = ∅ → (∅ ∈ 𝐴 ↔ ∅ ∈ ∅)) | |
| 4 | 2, 3 | mtbiri 679 | . . . 4 ⊢ (𝐴 = ∅ → ¬ ∅ ∈ 𝐴) |
| 5 | nner 2404 | . . . 4 ⊢ (𝐴 = ∅ → ¬ 𝐴 ≠ ∅) | |
| 6 | 4, 5 | 2falsed 707 | . . 3 ⊢ (𝐴 = ∅ → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| 7 | id 19 | . . . 4 ⊢ (∅ ∈ 𝐴 → ∅ ∈ 𝐴) | |
| 8 | ne0i 3498 | . . . 4 ⊢ (∅ ∈ 𝐴 → 𝐴 ≠ ∅) | |
| 9 | 7, 8 | 2thd 175 | . . 3 ⊢ (∅ ∈ 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| 10 | 6, 9 | jaoi 721 | . 2 ⊢ ((𝐴 = ∅ ∨ ∅ ∈ 𝐴) → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| 11 | 1, 10 | syl 14 | 1 ⊢ (𝐴 ∈ ω → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 713 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 ∅c0 3491 ωcom 4681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-int 3923 df-suc 4461 df-iom 4682 |
| This theorem is referenced by: nnmord 6661 bj-charfunr 16131 |
| Copyright terms: Public domain | W3C validator |