ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0eln0 GIF version

Theorem nn0eln0 4591
Description: A natural number is nonempty iff it contains the empty set. Although in constructive mathematics it is generally more natural to work with inhabited sets and ignore the whole concept of nonempty sets, in the specific case of natural numbers this theorem may be helpful in converting proofs which were written assuming excluded middle. (Contributed by Jim Kingdon, 28-Aug-2019.)
Assertion
Ref Expression
nn0eln0 (𝐴 ∈ ω → (∅ ∈ 𝐴𝐴 ≠ ∅))

Proof of Theorem nn0eln0
StepHypRef Expression
1 0elnn 4590 . 2 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
2 noel 3408 . . . . 5 ¬ ∅ ∈ ∅
3 eleq2 2228 . . . . 5 (𝐴 = ∅ → (∅ ∈ 𝐴 ↔ ∅ ∈ ∅))
42, 3mtbiri 665 . . . 4 (𝐴 = ∅ → ¬ ∅ ∈ 𝐴)
5 nner 2338 . . . 4 (𝐴 = ∅ → ¬ 𝐴 ≠ ∅)
64, 52falsed 692 . . 3 (𝐴 = ∅ → (∅ ∈ 𝐴𝐴 ≠ ∅))
7 id 19 . . . 4 (∅ ∈ 𝐴 → ∅ ∈ 𝐴)
8 ne0i 3410 . . . 4 (∅ ∈ 𝐴𝐴 ≠ ∅)
97, 82thd 174 . . 3 (∅ ∈ 𝐴 → (∅ ∈ 𝐴𝐴 ≠ ∅))
106, 9jaoi 706 . 2 ((𝐴 = ∅ ∨ ∅ ∈ 𝐴) → (∅ ∈ 𝐴𝐴 ≠ ∅))
111, 10syl 14 1 (𝐴 ∈ ω → (∅ ∈ 𝐴𝐴 ≠ ∅))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wo 698   = wceq 1342  wcel 2135  wne 2334  c0 3404  ωcom 4561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-v 2723  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-uni 3784  df-int 3819  df-suc 4343  df-iom 4562
This theorem is referenced by:  nnmord  6476  bj-charfunr  13527
  Copyright terms: Public domain W3C validator