| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0eln0 | GIF version | ||
| Description: A natural number is nonempty iff it contains the empty set. Although in constructive mathematics it is generally more natural to work with inhabited sets and ignore the whole concept of nonempty sets, in the specific case of natural numbers this theorem may be helpful in converting proofs which were written assuming excluded middle. (Contributed by Jim Kingdon, 28-Aug-2019.) |
| Ref | Expression |
|---|---|
| nn0eln0 | ⊢ (𝐴 ∈ ω → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elnn 4665 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) | |
| 2 | noel 3463 | . . . . 5 ⊢ ¬ ∅ ∈ ∅ | |
| 3 | eleq2 2268 | . . . . 5 ⊢ (𝐴 = ∅ → (∅ ∈ 𝐴 ↔ ∅ ∈ ∅)) | |
| 4 | 2, 3 | mtbiri 676 | . . . 4 ⊢ (𝐴 = ∅ → ¬ ∅ ∈ 𝐴) |
| 5 | nner 2379 | . . . 4 ⊢ (𝐴 = ∅ → ¬ 𝐴 ≠ ∅) | |
| 6 | 4, 5 | 2falsed 703 | . . 3 ⊢ (𝐴 = ∅ → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| 7 | id 19 | . . . 4 ⊢ (∅ ∈ 𝐴 → ∅ ∈ 𝐴) | |
| 8 | ne0i 3466 | . . . 4 ⊢ (∅ ∈ 𝐴 → 𝐴 ≠ ∅) | |
| 9 | 7, 8 | 2thd 175 | . . 3 ⊢ (∅ ∈ 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| 10 | 6, 9 | jaoi 717 | . 2 ⊢ ((𝐴 = ∅ ∨ ∅ ∈ 𝐴) → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| 11 | 1, 10 | syl 14 | 1 ⊢ (𝐴 ∈ ω → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 = wceq 1372 ∈ wcel 2175 ≠ wne 2375 ∅c0 3459 ωcom 4636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-iinf 4634 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-uni 3850 df-int 3885 df-suc 4416 df-iom 4637 |
| This theorem is referenced by: nnmord 6593 bj-charfunr 15610 |
| Copyright terms: Public domain | W3C validator |